Dynamical Coupled Channels Theory for nucleon resonances

Michael Doering
THE GEORGE
WASHINGTON
university
WASHINGTON, DC
Jefferson Lab
OThomas Jefferson National Accelerator Facility

Baryons 2021

18-22 October, Sevilla

- Conference Link: https://indico.cern.ch/event/1026059/
- My contact: doring@gwu.edu. Please write me for any questions or access to material upon which this lecture is based
- Work supported by:

Department of Energy, DOE DE-AC05-06OR23177 \& DE-SC0016582

HPC support by JSC grant jikp07

National Science Foundation Grant No. PHY 2012289

Literature \& Resources

- Part on quantum mechanical scattering: Some pictures \& formulas taken from
- Helmut Haberzettl, "Quantum Mechanics with Introduction to Quantum Field Theory", Lecture Notes, to be published; indicated as [HZ] (helmut@gwu.edu)
- Example codes in Mathematica, partially coming from my lectures at GW on computational physics:
- Dropbox
https://www.dropbox.com/sh/7h9bxxcvu124z2x/AAAiL2S5ISj8yVGYGiKejFxSa? $\mathrm{dl}=0$
- Several slides borrowed from Maxim Mai [MM] and Deborah Rönchen [DR]
- References are hyperlinks; usually, only reviews with didactic components are cited (this is a lecture, not a review)
- What this lecture is
- highlight of interesting aspects of arguable relevance with some useful links
-and what it isn't (systematic \& self-contained)
- But, still, with some explicit derivations and in-depth examples \& connections

Content

1. Scattering basics:
2. Scattering theory basics \& application to spherical well
3. Mathematica animation \& example code (bound state vs. resonances)
4. Resonances as poles: Analytic continuation \& the meson baryon amplitude
5. Phenomenology of resonances:
6. Spectrum of excited baryons from experiment: missing (?) resonances
7. A dynamical-coupled channel model
8. Statistical aspects: Model selection
9. Three-body aspects for dynamical coupled-channel models
10. Three-body unitarity for the construction of amplitudes
11. Analytic continuation for three-body amplitudes

Skipped content (Spare slides)

- Causality: Why are poles on the second Rieman sheet?
- Analyticity: Mandelstam variables and plane
- Crossing symmetry: Representations of the pion-nucleon amplitude
- Roy(-like) equations
- Application of DCC-like amplitudes in lattice QCD: three body resonances

Scattering energy named in this talk: $W=z=E=\sqrt{\sigma}$

Interesting light baryons
$\Delta(1232) 3 / 2^{-}$
First excited baryon discovered
Standard Breit-Wigner (BW) resonance [Crede]

$$
N(1440) 1 / 2^{+}, \text {"Roper" }
$$

Enigmatic; absent in many Lattice OCD and quark model calculations; non-BW [Burkert]
Λ (1405)
Two pole structure complicated
production [Mai]
$N(1535) 1 / 2^{-}, N(1650) 1 / 2^{-}$
Nearby, overlapping resonances with same quantum numbers
$N(1900) 3 / 2^{+}$ Recently discovered in large experimental baryon searches for "missing resonance"

Resonances or not?

1.1. QM Scattering: Basics

- Radiation condition: $\psi_{k}^{(+)}(\boldsymbol{r}) \xrightarrow{r \rightarrow \infty} e^{i \boldsymbol{k} \cdot \boldsymbol{r}}+\frac{e^{i k r}}{r} f(\theta)$
- Scattering amplitude \& partial-wave (PW) expansion:

$$
f(\theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) t_{\ell} P_{\ell}(\xi), \quad t_{\ell}=\frac{1}{k \cot \delta_{\ell}-i k}
$$

, Legendre polynomials P_{ℓ} and $\xi=\cos \theta$.

- Lippmann-Schwinger equation (LSE)
- PW-projected LSE

$$
T\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=V\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)+\int \mathrm{d}^{3} q V\left(\boldsymbol{p}^{\prime}, \boldsymbol{q}\right) \frac{1}{E-\frac{q^{2}}{2 m}+i \epsilon} T(\boldsymbol{q}, \boldsymbol{p})
$$

$$
T_{\ell}\left(p^{\prime}, p\right)=V_{\ell}\left(p^{\prime}, p\right)+\int_{0}^{\infty} \mathrm{d} q q^{2} \frac{V_{\ell}\left(p^{\prime}, q\right)}{E-\frac{q^{2}}{2 m}+i \epsilon} T_{\ell}(q, p)
$$

- Solve, e.g., by contour deformation

How to solve the LSE

- Example code in Mathematica: Implementation of Haftl-Tabakin scheme $[H a f t l]$

$$
T_{\ell}\left(p^{\prime}, p\right)=V_{\ell}\left(p^{\prime}, p\right)+\int_{0}^{\infty} \mathrm{d} q q^{2} \frac{V_{\ell}\left(p^{\prime}, q\right)}{E-\frac{q^{2}}{2 m}+i \epsilon} T_{\ell}(q, p)
$$

- Gauss integration $\int f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}\right) w_{i}$ for n off-shell momenta and one on-shell momentum $n+1$

$$
\bar{V}=\left(\begin{array}{cccc}
V_{11} & \ldots & V_{1 n} & V_{1, n+1} \tag{z=E}\\
\vdots & \ddots & \vdots & \vdots \\
V_{n 1} & \ldots & V_{n n} & \vdots \\
V_{n+1,1} & \cdots & \cdots & V_{n+1, n+1}
\end{array}\right) \quad \bar{G}=\left(\begin{array}{cccc}
\frac{q_{1}^{2} w_{1}}{z-E_{1}} & 0 & \ldots & 0 \\
0 & \ddots & & \vdots \\
\vdots & & \frac{q_{n}^{2} w_{n}}{z-E_{n}} & \vdots \\
0 & \cdots & \cdots & 0
\end{array}\right)
$$

$\bar{T}=\left(\begin{array}{cccc}T_{11} & \ldots & T_{1 n} & T_{1, n+1} \\ \vdots & \ddots & \vdots & \vdots \\ T_{n 1} & \ldots & T_{n n} & \vdots \\ T_{n+1,1} & \cdots & \ldots & T_{n+1, n+1}\end{array}\right)$

- Gauss nodes q_{1}, \ldots, q_{n} chosen along contour from 0 to ∞
- On-shell point chosen as

$$
E=\frac{q_{n+1}^{2}}{2 m}
$$

where E is scattering energy

How to solve the LSE (2)

$$
T_{\ell}\left(p^{\prime}, p\right)=V_{\ell}\left(p^{\prime}, p\right)+\int_{0}^{\infty} \mathrm{d} q q^{2} \frac{V_{\ell}\left(p^{\prime}, q\right)}{E-\frac{q^{2}}{2 m}+i \epsilon} T_{\ell}(q, p)
$$

Discretize the integral: $\int d q q^{2} V\left(p^{\prime}, q\right) G(q, E) T(q, p) \quad \rightarrow \quad \bar{V} \bar{G} \bar{T}$
Gauss integration $\int f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}\right) w_{i}$ for n off-shell momenta and one on-shell momentum $n+1$

$$
\bar{V} \bar{G} \bar{T}=\left(\begin{array}{cccc}
\sum_{i=1}^{n} V_{1 i} \frac{q_{i}^{2} w_{i}}{z-E_{i}} T_{i 1} & \ldots & \sum_{i=1}^{n} V_{1 i} \frac{q_{i}^{2} w_{i}}{z-E_{i}} T_{i n} & \sum_{i=1}^{n} V_{1 i} \frac{q_{i}^{2} w_{i}}{z-E_{i}} T_{i, n+1} \\
\vdots & \ddots & \vdots & \vdots \\
\sum_{i=1}^{n} V_{n i} \frac{q_{i}^{2} w_{i}}{z-E_{i}} T_{i 1} & \ldots & \sum_{i=1}^{n} V_{n i} \frac{q_{i}^{2} w_{i}}{z-E_{i}} T_{i n} & \vdots \\
\sum_{i=1}^{n} V_{n+1, i, i} \frac{q_{i}^{2} w_{i}}{z-E_{i}} T_{i 1} & \ldots & \ldots & \sum_{i=1}^{n} V_{n+1, i} \frac{q_{i}^{2} w_{i}}{z-E_{i}} T_{i, n+1}
\end{array}\right)
$$

How to solve the LSE (3)

- On-shell \rightarrow on-shell for physical amplitude

$$
\begin{array}{rlr}
T_{i k} & =V_{i k}+\sum_{j=1}^{n} V_{i j} \frac{q_{j}^{\leftarrow} w_{j}}{z-E_{j}} T_{j k} & \text { off-shell } \rightarrow \text { off-shell } \\
T_{n+1, k} & =V_{n+1, k}+\sum_{j=1}^{n} V_{n+1, j} \frac{q_{j}^{2} w_{j}}{z-E_{j}} T_{j k} & \text { off-shell } \rightarrow \text { on-shell } \\
T_{i, n+1} & =V_{i, n+1}+\sum_{j=1}^{n} V_{i j} \frac{q_{j}^{2} w_{j}}{z-E_{j}} T_{j, n+1} & \text { on-shell } \rightarrow \text { off-shell } \\
T_{n+1, n+1} & =V_{n+1, n+1}+\sum_{j=1}^{n} V_{n+1, j} \frac{q_{j}^{2} w_{j}}{z-E_{j}} T_{j, n+1} & \text { on-shell } \rightarrow \text { on-shell }
\end{array}
$$

- We can now invert the matrix:

$$
\overline{\mathrm{T}}=(\mathbb{1}-\overline{\mathrm{V}} \overline{\mathrm{G}})^{-1} \overline{\mathrm{~V}}
$$

CompPhys-project

- Spherical well with LSE compared to analytic solution
- "LSE_for_Spherical_Well.nb"

Spherical well

Potential in radial

 coordinates:

Scattering phase shifts (E>0)
$\tan \delta_{\ell}=\frac{k j_{\ell}^{\prime}(k R)-\gamma_{\ell} j_{\ell}(k R)}{k n_{\ell}^{\prime}(k R)-\gamma_{\ell} n_{\ell}(k R)}$

Bound state energies $(E<0) \quad$ [note: $a=R]$

$$
\begin{gathered}
v=a^{2} v_{0}=\frac{2 m}{\hbar^{2}} V_{0} a^{2} \\
\lambda=a^{2} \kappa^{2}=-\frac{2 m a^{2}}{\hbar^{2}} E>0
\end{gathered}
$$

Breit-Wigner Resonances

- Small energy $k R \ll 1$

$$
\tan \delta_{\ell} \approx \underset{\underbrace{\frac{\ell-\gamma_{\ell} R}{\ell+1+\gamma_{\ell} R}} \frac{(k R)^{2 \ell+1}}{(2 \ell+1)!!(2 \ell-1)!!}}{=0}
$$

- Expansion around the pole:

$$
\tan \delta_{\ell} \approx \frac{1}{\left(E-E_{\mathrm{R}}\right) g_{\ell}^{\prime}\left(E_{\mathrm{R}}\right)} \frac{(k R)^{2 \ell+1}}{[(2 \ell-1)!!]^{2}}
$$

- Or:

$$
\tan \delta_{\ell} \approx-\frac{\Gamma_{\ell}}{2\left(E-E_{\mathrm{R}}\right)} \quad \text { where } \quad \Gamma_{\ell}=-\frac{2(k R)^{2 \ell+1}}{g_{\ell}^{\prime}\left(E_{\mathrm{R}}\right)[(2 \ell-1)!!]^{2}}
$$

- For t-matrix and cross section:

$$
t_{\ell} \approx \frac{1}{k} \frac{\frac{\Gamma_{\ell}}{2}}{E_{\mathrm{R}}-E-i \frac{\Gamma_{\ell}}{2}}
$$

$$
\sigma \approx \frac{4 \pi}{k^{2}}\left(2 \ell_{0}+1\right) \frac{\frac{\Gamma_{\ell_{0}}^{2}}{4}}{\left(E-E_{\mathrm{R}}\right)^{2}+\frac{\Gamma_{\ell_{0}}^{2}}{4}}
$$

BW resonances and Ramsauer-Townsend

$$
\begin{aligned}
& f(\theta) \xrightarrow{k \rightarrow 0} t_{0} P_{0}=t_{0}=\frac{\sin \delta_{0}}{k} \mathrm{e}^{i \delta_{0}} \approx-a \mathrm{e}^{i \delta_{0}} \\
& \sigma_{0}(k)=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0}(k)
\end{aligned}
$$

Typical Breit-Wigner resonances

ρ-meson
photoproduction
$\left.\begin{array}{l}\mathrm{M}=760 \pm 10 \mathrm{MeV} \\ \Gamma=135 \pm 10 \mathrm{MeV}\end{array}\right\} \quad$ Hydrogen, 9 BeV.
$\left.\begin{array}{l}\mathrm{M}=765 \pm 10 \\ \Gamma=152 \pm 10\end{array}\right\} \quad$ Deuterium, 9 BeV.

Deficiencies of Breit-Wigner

- Breit-Wigner resonances are an idealized case
- No background (see Laurent expansion previous slide)
- Reaction dependent: Shape changes in different channels
- No energy-energy dependent width in simplest BW form. Width MUST be energy dependent even for S-wave (unitarity)
- Adding Breit-Wigner resonances violates unitarity
- Close-by threshold have an influence (Generalization: Flatté)

$$
\begin{aligned}
& A_{i} \sim \frac{M_{R} \sqrt{\Gamma_{0} \Gamma_{i}}}{M_{R}^{2}-E^{2}-i M_{R}\left(\Gamma_{1}+\Gamma_{2}\right)}, \quad i=1,2 \quad 1: \pi \eta, 2: \bar{K} K \\
& \Gamma_{1}=g_{1} k_{1}, \quad k_{1}=\frac{1}{2 E} \sqrt{\left[E^{2}-\left(m_{\eta}+m_{\pi}\right)^{2}\right]\left[E^{2}-\left(m_{\eta}-m_{\pi}\right)^{2}\right]} \quad \Gamma_{2}=g_{2} k_{2} \quad k_{2}=\frac{\sqrt{\frac{E^{2}}{4}-m_{K}^{2}}}{\text { [Lesniak] }}
\end{aligned}
$$

- Coupled-channel environment respected
- Unitarity respected (as long as no other background is added ;)
- Example of "analytic continuation": k_{2} is complex below $\bar{K} K$ threshold!

Background

- Refers to non-resonant contributions to scattering amplitude (= physical effects), not experimental background
- Sometimes resonances and background are added at the level of cross sections, but, of course, they add at level of amplitudes (interference)
- Resonances are by no means bumps in cross sections:

More complicated cases

1.2 from resonances to bound state

A computational physics exercise:

In this exercise you will learn about analytic properties of the scattering amplitude. First, have a look at this video - you will produce something similar. The exercise serves to get intuition about scattering/bound state problems and the underlying analytic structure in terms of singularities that manifest themselves as resonances and bound states - and how one transforms into the other as the potential depth changes. For simplicity, you may set $\hbar=m=1$ in the entire problem. This is also done in the video. Note: here we look at the S-wave only.
Our example is the spherical square well. We want to make an animation that shows the partialwave amplitude $t_{0}(k)$ as a function of $k \in \mathbb{C}$. Treating the problem in the complex k-plane is slightly simpler because there is only one Riemann sheet while the complex $E=\hbar^{2} k^{2} /(2 m)$-plane has two Riemann sheets.

1. Bound state problem: From topic 5, solve the bound-state problem numerically for a well that allows for at least one S-wave bound state. Check the bound state condition to make sure the state exists. Make a plot in which you show the RHS and LHS of Eq. (5.188) for illustration.
2. The power of analyticity: Bound state energies are pole positions of t_{0} on the positive imaginary k-axis. For the same well as before, search numerically for poles and confirm that their positions (or, position if you have a well with only one bound state) coincide with the bound state energies determined in 1.
3. Pole trajectories: Trace the pole movements ("trajectories") in the complex k-plane by plotting $\log \left|t_{0}\right|(k)$ for different $0<V_{0}<V_{\max }$ (make an animation). The logarithm only serves to make poles more visible in the contour plot. This would look like in the video, but you do not have to look for poles for every value of V_{0} which is quite cumbersome and takes a lot of time. However, do the animation like in that video, i.e, complex plane to the left and phase shift to the right, to see what effects poles have on the phase shift. Choose the maximal depth of the well, $V_{\max }$, such that there you have at least two bound states.

Reminder:

Potential in radial coordinates:

Scattering phase shifts (E>0)
$\tan \delta_{\ell}=\frac{k j_{\ell}^{\prime}(k R)-\gamma_{\ell} j_{\ell}(k R)}{k n_{\ell}^{\prime}(k R)-\gamma_{\ell} n_{\ell}(k R)}$

Bound state energies ($\mathrm{E}<0$) [note: $\mathrm{a}=\mathrm{R}$] QMI

Complex momentum vs. energy plane

One Riemann sheet
Two Riemann sheets

[HZ]

Resonances and bound states

$$
E=\frac{(\hbar k)^{2}}{2 m}
$$

From resonances to bound states

Left column: S-wave T-matrix, $\left|t_{0}\right|$, in the complex-momentum plane (arb. units). Right column: phase shift.
(a) For a shallow potential, there is no bound state, but only virtual state 1 and resonances 2 and 3.

In (b), infinite scattering length is reached which motivates a discussion of universality. [Braaten]

In (c), pole 1 became a deeply bound state. Pole 2 and its mirror pole 2' have met on the imaginary k-axis and then separated again as virtual states $\overline{2}$ and $\overline{2}^{\prime}$, with $\overline{2}$ on its way to become a bound state and $\overline{2}^{\prime}$ a deeper-bound virtual state. Such intriguing S-wave pole trajectories have only been discovered ten years ago.
[Hanhart et al., 08074.2871]

Chiral trajectories of light mesons

- Quark-mass dependence as predicted from "Inverse amplitude method" with one-loop ChPT
[Hanhart et al., 0801.2871]

- Axes: \sqrt{s} vs. k
- Resonances \rightarrow Virtual state \rightarrow bound state
- But rho-resonance: rather featureless conversion to bound state
- Wide scalar mesons are not at all conventional Breit-Wigner resonances
- Prominent molecular component
[Morgan/Pennington] [Baru] [Guo]

Feshbach resonances [Braaten]

Magnetic field \rightarrow

1.3 Baryon resonances as poles

[see spare slides on crossing symmetry and causality]

- Defining resonances as poles in amplitudes at complex energies resolves all mentioned problems
- Real part of pole position \Longleftrightarrow Mass
- $2 x$ Imaginary part of pole position \Longleftrightarrow Width
- Pole residue \Longleftrightarrow Branching ratio into different channels because amplitudes factorize at poles
- Next goal: What is this?
- Red:Real thresholds
- Blue: sub-channel thres.
-Why is Roper double?
- What happens below threshold?

- Thresholds are fixed by kinematics
- Position of cuts are by convention

- And many others: $\omega \mathrm{N}, \eta$ ' N, \ldots

- The nucleon is a bound state in the P11 partial wave
- The Roper resonance $\mathrm{N}(1440)$ is very unusual and non-Breit-Wigner

Analytic continuation (2B)

Inverse Amplitude Method [Dobado] $\sqrt{\sigma}=z=$ sub-system scattering energy
$T_{22}(\sigma)=\tilde{v}\left(k_{\mathrm{cm}}\right) \tau(\sigma) \tilde{v}^{*}\left(k_{\mathrm{cm}}\right), k_{\mathrm{cm}}=\sqrt{\frac{\sigma}{4}-m_{\pi}^{2}}$,
$\tau^{-1}(\sigma)=K^{-1}-\Sigma$, $\tau^{-1}(\sigma)=K^{-1}-\Sigma$,

$$
\Sigma=\int_{0}^{\infty} \frac{\mathrm{d} k k^{2}}{(2 \pi)^{3}} \frac{1}{2 E_{k}} \frac{\sigma^{2}}{\sigma^{\prime 2}} \frac{\tilde{v}(k)^{*} \tilde{v}(k)}{\sigma-4 E_{k}^{2}+i \epsilon}
$$

$$
E_{k}=\sqrt{k^{2}+m_{\pi}^{2}}
$$

"Adiabatic" contour deformation

Threshold effects in S-wave

$$
T_{22}(\sigma)=\tilde{v}\left(k_{\mathrm{cm}}\right) \tau(\sigma) \tilde{v}^{*}\left(k_{\mathrm{cm}}\right), k_{\mathrm{cm}}=\sqrt{\frac{\sigma}{4}-m_{\pi}^{2}}
$$

$$
\tau^{-1}(\sigma)=K^{-1}-\Sigma
$$

$$
\Sigma=\int_{0}^{\infty} \frac{\mathrm{d} k k^{2}}{(2 \pi)^{3}} \frac{1}{2 E_{k}} \frac{\sigma^{2}}{\sigma^{\prime 2}} \frac{\tilde{v}(k)^{*} \tilde{v}(k)}{\sigma-4 E_{k}^{2}+i \epsilon}
$$

$$
-50=\quad \operatorname{Im} \Sigma
$$

Assume S-wave

Classification of analytic structures

- Thresholds,

Triangle singularities?

- Classification of poles:
- Resonances (2 ${ }^{\text {nd }}$ sheet, above threshold) $\Delta(1232), \rho(770), \ldots$
- Bound states (1st sheet, below threshold) $N, d \checkmark$
- Virtual states (2nd ${ }^{\text {nd }}$ sheet, below threshold): threshold enhancements
- Shadow poles (distant unphysical sheets), sometimes visible as enhanced cusps ("shoulder" of a resonance) $N(1535) 1 / 2^{-}$
- Quasibound states: Bound w.r.t. a channel that opens at higher masses + strong coupling to that channel; open w.r.t. to another channel to which the state couples rather weakly. $N(1535) 1 / 2^{-}, \Lambda(1405) 1 / 2^{-}$
- Resonances with two-pole structure $\Lambda(1405) 1 / 2^{-}$?

Shadow poles

- Replica of a regular resonance pole on a hidden sheet
- Visible through "shoulder" only
- Example: $N(1535)$ close to the $\eta \mathrm{N}$ threshold

Quasibound state - S11 partial wave

One of many possible examples: [Doring]

Two-pole structures: $\boldsymbol{\Lambda (1 4 0 5)}$

- Two resonance poles (almost) on the same Riemann sheet

Hadronic molecule [Mai]

Two-pole structure \& complex threshold:

 Roper [SAID]- Or rather shadow pole? Debatable...

Strategy: To reliably extract resonances from data....

- manifestly include all known analytic structures into the model amplitude before fitting to data
- Respect unitarity, analyticity,...

Two nearby resonances

2. Phenomenology of resonances 2.1 Spectrum of excited baryons

Experimental study of hadronic reactions

source: ELSA; data: ELSA, JLab, MAMI

Theoretical predictions of excited hadrons e.g. from lattice calculations:
(with some limitations)

$m_{\pi}=396 \mathrm{MeV}$ [Edwards et al., Phys.Rev. D84 (2011)]

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

- unitary isobar models: unitary amplitudes + Breit-Wigner resonances

MAID, Yerevan/JLab, KSU, JM model ($\pi N \& \pi \pi N$)

- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- other groups: JPAC (high energies), Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), Gent, truncated PWA

QCD at low energies
Non-perturbative dynamics How many are there?
What are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states
\rightarrow missing resonance problem)
\rightarrow 2-quark/3-quark, hadron molecules, ...

Faddeev Eq. / DSE (Binosi, Cloet, Chang, Roberts)

Using ONLY meson-baryon degrees of freedom (no explicit quark dynamics):

Manifestly gauge invariant approach based on full BSE solution

[Ruic, M. Mai, U.-G. Meissner PLB 704 (2011)]

Gauge invariance

- Exact unitary meson-baryon scattering amplitude T with parameters, fixed to reproduce:
- πN-partial wave S_{11} and S_{31} for $\sqrt{s}<1560 \mathrm{MeV}$

Arndt et al. (2012)

- $\pi^{-} p \rightarrow \eta n$ differential cross sections

Prakhov et al. (2005)

\rightarrow Making the "Missing resonance problem" worse ?!

Results in dynamical quark picture

```
Quark-diquark with reduced pseudoscalar + vector diquarks: GE,Fischer, Sanchis-Alepuz, PRD 94 (2016)
```



```
                                    [parts of slide courtesy of G. Eichmann, Few Body 2018]
```

```
                                    [parts of slide courtesy of G. Eichmann, Few Body 2018]
```


Photoproduction experiments
(Jlab, Mami, Elsa, GRAAL,...)

Degrees of freedom

- Energy
- Scattering angle
- Polarizations

Typical data situation

Electroproduction reveals resonance structure

Proton-Roper Transition [Burkert] [Segovia]

Hybrid baryons \& $1^{\text {st }}$ lattice results

Hybrid states: same J^{P} values as q^{3} baryons.
Identification? Measure Q^{2} dependence of electro-couplings (CLAS 12)

2.2. Dynamical coupled-channel approaches

- ANL-Osaka (former: EBAC)
- Dubna-Mainz-Taipei model [Tiator]
- Jülich-Bonn [Rönchen]/Jülich-Bonn-Washington (latest edition with electroproduction, [Mai])
- ... (there are more!)
- Characteristics:
- Direct fit to data (pion \& photon-induced)
- Simultaneous fit to data on different final states
- Integral scattering equation as needed for proper treatment of three-body channels $(\pi \pi N)$: One does need two independent integrations for 3B kinematics

JBW DCC approach (Jülich-Bonn-Washington)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

- channels ν, μ, γ :

Compare with
Lippman-Schwinger equation:

$$
T_{\ell}\left(p^{\prime}, p\right)=V_{\ell}\left(p^{\prime}, p\right)+\int_{0}^{\infty} \mathrm{d} q q^{2} \frac{V_{\ell}\left(p^{\prime}, q\right)}{E-\frac{q^{2}}{2 m}+i \epsilon} T_{\ell}(q, p)
$$

JBW DCC approach (Jülich-Bonn-Washington)

The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

3-body $\pi \pi N$ channel:

- parameterized effectively as $\pi \Delta, \sigma N, \rho N$
- $\pi N / \pi \pi$ subsystems fit the respective phase shifts
$L_{\text {b }}$ branch points move into complex plane
Inclusion of branch points important to avoid false resonance signal!

JBW DCC approach (Jülich-Bonn-Washington)

The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

- potentials V constructed from effective \mathcal{L}
- s-channel diagrams: T^{P}
genuine resonance states
- t - and u-channel: $T^{N P}$ dynamical generation of poles partial waves strongly correlated
- contact terms

Another Visualization

Channel space

- Jülich-Bonn-Washington approach has the same channel space as ANL/Osaka (former EBAC) approach

μ	$J^{P}=$	$\frac{1}{2}^{-}$	$\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$	$\frac{5}{2}^{+}$	$\frac{7}{2}^{+}$	$\frac{7}{2}^{-}$	$\frac{9}{2}^{-}$	$\frac{9}{2}^{+}$
1	πN	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
2	$\rho N(S=1 / 2)$										
3	$\rho N(S=3 / 2,\|J-L\|=1 / 2)$	-	P_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}
P_{13}	H_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}				
4	$\rho N(S=3 / 2,\|J-L\|=3 / 2)$	D_{11}	-	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}
5	ηN										
6	$\pi \Delta(\|J-L\|=1 / 2)$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
7	$\pi \Delta(\|J-L\|=3 / 2)$	-	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
8	σN										
9	$K \Lambda$	D_{11}	-	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}
10	$K \Sigma$	P_{11}	S_{11}	D_{13}	P_{13}	F_{15}	D_{15}	G_{17}	F_{17}	H_{19}	G_{19}

S-, t- and u-channel exchanges

- 21 s -channel states (resonances) coupling to $\pi N, \eta N, K \Lambda, K \Sigma, \pi \Delta, \rho N$.
- t - and u-channel exchanges ("background"):

	$\pi \mathrm{N}$	$\rho \mathrm{N}$	$\eta \mathrm{N}$	$\pi \Delta$	σN	K	K
$\pi \mathrm{N}$	$\begin{aligned} & \mathrm{N}, \Delta,(\pi \pi)_{\sigma}, \\ & (\pi \pi)_{\rho} \end{aligned}$	$\begin{aligned} & \mathrm{N}, \Delta, \mathrm{Ct} . \\ & \pi, \omega, \mathrm{a}_{1} \end{aligned}$	$\mathrm{N}, \mathrm{a}_{0}$	N, Δ, ρ	N, π	$\Sigma, \Sigma^{*}, \mathrm{~K}^{*}$	$\begin{aligned} & \Lambda, \Sigma, \Sigma^{*}, \\ & \mathrm{~K}^{*} \end{aligned}$
$\rho \mathrm{N}$		N, $\Delta, \mathrm{Ct} ., \rho$	-	N, π	-	-	-
$\eta \mathrm{N}$			$\mathrm{N}, \mathrm{f}_{0}$	-	-	K^{*}, Λ	$\Sigma, \Sigma^{*}, \mathrm{~K}^{*}$
$\pi \Delta$				N, Δ, ρ	π	-	-
$\sigma \mathrm{N}$					N, σ	-	-
$\mathrm{K} \Lambda$		Is there a behind th	system is?			$\begin{aligned} & \Xi, \Xi^{*}, \mathrm{f}_{0} \\ & \omega, \phi \end{aligned}$	Ξ, Ξ^{*}, ρ
$\mathrm{K} \Sigma$							$\begin{aligned} & \Xi, \Xi^{*}, \mathrm{f}_{0} \\ & \omega, \phi_{2} \rho \end{aligned}$

$\mathbf{2 ~} \boldsymbol{\rightarrow} \mathbf{3}$ and $\mathbf{3} \boldsymbol{\rightarrow} \mathbf{3}$ body unitarity

- See last part of this lecture: Unitarity requires certain transition amplitudes

$$
2 \rightarrow 3
$$

$$
3 \rightarrow 3
$$

Three-body channels $\sigma N, \pi \Delta, \rho N$

- Resonant sub-channels
- Fit $2 \rightarrow 2$ amplitude to $2 \rightarrow 2$ scattering data
- Include as sub-channel in 3-body amplitude:2-body input depends only on on-
 shell $2 \rightarrow 2$ scattering

Amplitude parametrization

Isobar models (Jlab; JM15) and others

Two-body unitarity

Disp. rel. (Aznauryan, Burkert,..) KT equations, t-channel analyticity; Restoration of crossing symmetry via dispersion relations (Aitchison, Kubis, Szczepaniak, Tiator)

$T=V+V G T$,

Genuine Resonance:

Unitarity loop G:

- Re G $\rightarrow 0$: K-matrix
- V point-like: SAID Integral equation: Julich-Bonn, ANL-Osaka

Amplitude parametrization

Isobar models (Jlab; JM15) and others

Two-body unitarity

Disp. rel. (Aznauryan, Burkert,..) KT equations, t-channel analyticity; Restoration of crossing symmetry via dispersion relations (Aitchison, Kubis, Szczepaniak, Tiator, ...)

Explicit resonance Terms? Analyticity \quad No
(math.) Analyticity (disp.) No

Effective $\pi \pi N$?Yes

Coupling of the photon (1)

- Direct parametrization of multipoles....

Multipole amplitude
$M_{\mu \gamma}^{\prime \prime}=V_{\mu \gamma}^{\prime \prime}+\sum_{\kappa} T_{\mu \kappa}^{\prime \prime} G_{\kappa} V_{\kappa \gamma}^{\prime \prime}$
(partial wave basis)

$$
m=\pi, \eta, K, B=N, \Delta, \Lambda
$$

$T_{\mu \kappa}$: Jülich hadronic T-matrix \rightarrow Watson's theorem fulfilled by construction
\rightarrow analyticity of T: extraction of resonance parameters

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$
=\frac{\tilde{\gamma}_{\mu}^{a}(q)}{m_{N}} P_{\mu}^{\mathrm{NP}}(E)+\sum_{i} \frac{\gamma_{\mu ; i}^{a}(q) P_{i}^{P}(E)}{E-m_{i}^{b}}
$$

Coupling of photon (2)

- ... vs. gauge-invariant photon interaction [Haberzettl]

- Requires to make amplitude explicitly covariant
- Requires to calculate many tree level amplitudes
- Requires to calculate many photon-(higher-spin) resonance couplings from Lagrangians
- Realized in Julich-Bonn model [Huang] and EBAC/ANL-Osaka [Kamano]
- EBAC also analyzed two-pion final states

Resonance Couplings (typical outcome)

Resonance states: Poles in the T-matrix on the $2^{\text {nd }}$ Riemann sheet
[D. Roenchen, M. D., U.-G. Meißner, EPJ A 54, 110 (2018)

- $\operatorname{Re}\left(E_{0}\right)=$ "mass", $-2 \operatorname{lm}\left(E_{0}\right)=$ "width"
- elastic πN residue $\left(\left|r_{\pi N}\right|, \theta_{\pi N \rightarrow \pi N}\right)$, normalized residues for inelastic channels $\left(\sqrt{\Gamma_{\pi N} \Gamma_{\mu}} / \Gamma_{\text {tot }}, \theta_{\pi N \rightarrow \mu}\right)$
- photocouplings at the pole: $\tilde{A}_{\text {pole }}^{h}=A_{\text {pole }}^{h} e^{i \vartheta^{h}}, h=1 / 2,3 / 2$ Inclusion of $\gamma p \rightarrow K^{+} \Lambda$ in JüBo ("JuBo2017-1"): 3 additional states

	$z_{0}[\mathrm{MeV}]$	$\frac{\Gamma_{\pi N}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{\eta N}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{K \Lambda}}{\Gamma_{\text {tot }}}$
$\mathrm{N}(1900) 3 / 2^{+}$	$1923-i 108.4$	1.5%	0.78%	2.99%
$\mathrm{~N}(2060) 5 / 2^{-}$	$1924-i 100.4$	0.35%	0.15%	13.47%
$\Delta(2190) \mathbf{1} / \mathbf{2}^{+}$	$2191-i 103.0$	33.12%		

- $N(1900) 3 / 2^{+}$: s-channel resonances, seen in many other analyses of kaon photoproduction (BnGa), 3 stars in PDG
- $N(2060) 5 / 2^{-}$: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta(2190) 1 / 2^{+}$: dyn. gen., no equivalent PDG state

Current state in η photoproduction: Multipoles from different groups

From: EtaMAID2018
[Tiator et al., EPJA54 (2018)] Analyzes:

$$
\begin{gathered}
\gamma p \rightarrow \eta p \\
\gamma p \rightarrow \eta^{\prime} p \\
\gamma n \rightarrow \eta n \\
\gamma n \rightarrow \eta^{\prime} n
\end{gathered}
$$

EtaMAID2018
BnGa [PLB 772 (2017)]
JuBo (dotted) [EPJA 54 (2018)] KSU [1804.06031]

Review: Krusche, Wilkins, [Prog.Part.Nucl.Phys. 80 (2014)]

Ambiguities \& complete experiment

- Does the measurement of a set of observables allow to determine the partial-wave amplitudes (up to one global undetermined phase)?
- Polynomial expansion of cross section: Assume only $\ell=0,1$ exist. Then:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{k^{2}}\left[\sin ^{2} \delta_{0}+6 \sin \delta_{0} \sin \delta_{1} \cos \left(\delta_{1}-\delta_{0}\right) \cos \theta+9 \sin ^{2} \delta_{1} \cos ^{2} \theta\right] \tag{*}
\end{equation*}
$$

- Assume experimental cross section is well described by A, B, C, where

$$
\frac{d \sigma}{d \Omega}=\frac{1}{k^{2}}\left[A+B \cos \theta+C \cos ^{2} \theta\right]
$$

- Sign ambiguity: (*) does not change if signs of both δ_{0}, δ_{1} are changed.
- Generalization to systems with spin (usually, photoproduction):
- "Complete experiment" (up to a global, energy-dependent phase)
- "Complete truncated-partial-wave experiment"

2.2 One statistical aspect \lfloor Landay

- How many resonances does one need to describe a given data set?
- Search for a "minimal set" (Occam's razor)
- Too many hypothesis to test in fits (all combinations of all condidates)
- Automatized methods \rightarrow Model selection techniques
- "Least absolute shrinkage and selection operator" (LASSO) creates a whole family of models automatically from smaller to larger complexity
- Additional criteria help to select the minimal model (usually weighing the chisquare against degrees of freedom)

LASSO

See, e.g.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, T. Hastie, R. Tibshirani, J. Friedman, Springer 2009 second ed.

Information theory criteria

$A / C=-2 \max \log (L(\hat{\theta} \mid$ data $))+2 k=\chi^{2}+2 k$
$A I C_{C}=A I C+\frac{2 k(k+1)}{n-k-1}$
$B I C=-2 \max \log (L(\hat{\theta} \mid$ data $))+2 \log (n)=\chi^{2}+k \log (n)$
Close relation to Bayesian model comparison (here: $n \gg k$)

See, e.g.: Andrew A. Neath, Joseph E. Cavanaugh, DOI: 10.1002/wics. 199

Synthetic data results

- 10 partial waves
- 10 resonance candidates
- Synthetic data with 4 active resonances

$$
\begin{aligned}
W)= & e^{i \phi}\left(\frac{k_{f}(W)}{\Lambda}\right)^{L+1 / 2} \\
& \times\left(a e^{-\alpha^{2}\left(\frac{k_{f}(W)}{\Lambda}\right)^{2}}-x e^{i \Phi} \frac{\Gamma / 2}{W-M+i \Gamma / 2}\right) \times
\end{aligned}
$$

- Penalty (group LASSO):

$$
P_{g r}(\lambda)=\lambda^{4} \sum_{i=1}^{i_{\max }} \sqrt{p_{i}}\left|x_{i}\right|
$$

$$
\text { Large } \lambda \rightarrow \text { small } \lambda
$$

Results for the reaction $\bar{K} N \rightarrow K \Xi$ LLanday

- Start with an abundant set of resonances
- Fit data for different penalties
- Use information criteria to identify to point of maximal information
- Of 21 PDG candidates, 10 survive.

3. Three-body aspects

Light mesons

- Important channel in GlueX @ Jlab: hybrids and exotics
- Finite volume spectrum from lattice QCD:

Lang (2014), Woss [HadronSpectrum] (2018)
Hörz (2019), Culver (2020), Fischer (2020), Hansen (2020),...

Light baryons

- Roper resonance is debated for ~ 50 years in experiment. Can only be seen in PWA.
- $1^{\text {st }}$ calculation w. meson-baryon operators on the lattice: Lang et al. (2017)

3.1 Three-body unitarity with isobars * [Mail

$$
\begin{aligned}
&\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle \\
& \times \prod_{\ell=1}^{3}\left[\frac{d^{4} k_{\ell}}{(2 \pi)^{4}}(2 \pi) \sqrt{\left.\delta^{+}\left(k_{\ell}^{2}-m^{2}\right)\right]}(2 \pi)^{4} \delta^{4}\left(P-\sum_{\ell=1}^{3} k_{\ell}\right)\right. \\
& \begin{array}{l}
\text { delta function sets all intermediate } \\
\text { particles on-shell }
\end{array}
\end{aligned}
$$

Three-body unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

General Ansatz for the isobar-spectator interaction
$\rightarrow \mathbf{B} \& \boldsymbol{\tau}$ are new unknown functions

Three-body unitarity
$\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle$

Three-body unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

General connected-disconnected structure

Three-body unitarity

Three-body unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

Three-body unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

Three-body unitarity
$\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle$

Scattering amplitude (1)

$3 \rightarrow 3$ scattering amplitude is a 3 -dimensional integral equation

Imaginary parts of $\boldsymbol{B}, \boldsymbol{S}$ are fixed by unitarity/matching

Disc $B(u)=2 \pi i \lambda^{2} \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}}$

- un-subtracted dispersion relation

$$
\langle q| B(s)|p\rangle=-\frac{\lambda^{2}}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}+i \epsilon\right)}+C
$$

- one- $\boldsymbol{\pi}$ exchange in TOPT \rightarrow RESULT, NOT INPUT!
- One can map to field theory but does not have to. Result is a-priori dispersive.

Scattering amplitude (2)

Here: Version in which isobar rewritten in on-shell $2 \rightarrow 2$ scattering amplitude T_{22}

(S-wave)

3.2 Analytic cont. 3B (1)

- Two contours (SMC and SEC)
- Deform both "adiabatically" to go to complex s
- Set of rules:
- Contours cannot intersect with each others
- Contours cannot intersect with (3-body) cuts
- Passing singularities left or right determines sheet

Analytic continuation 3B (2)

- Three-body cuts
$\sqrt{s}-E_{p}-E_{p^{\prime}}-E_{p+p^{\prime}}+i \epsilon=0$

- Complex branch points

Analytic continuation 3B (3)

- Real and complex branch points
- Poles appear doubled due to new Riemann sheets due to (complex) thresholds
- Circular cut (CC) and short (nucleon) cut (SNC) exist only in partial waves
- Complex branch points can mimic resonances (ρN) [Ceci]

Summary

- Resonances are not necessarily bumps in cross sections
- Bumps in cross sections are not necessarily resonances
- Threshold cusps; complex branch points; triangle singularities, statistical fluctuations
- Some quark models and some recent IQCD calculations predict more resonances than found in experiment
- Large-scale experimental effort at JLab, Elsa, Mami,... together with pheno-analyses found convincing signals of many new states
- Future: Ongoing efforts; new experiments (BGO-OD); electromagnetic properties through electroproduction reactions (Jlab 12-GeV upgrade)
- From a phenomenological point of view, the challenge in baryon spectroscopy is rather data consistency and systematic error than amplitude parametrization \rightarrow New statistical methods needed

Spare slides

Physics opportunities with meson beams

Physics opportunities with meson beams

[Paper link]

William J. Briscoe, Michael Döring, Helmut Haberzettl, D. Mark Manley,
Megumi Naruki, Igor I. Strakovsky and Eric S. Swanson
Eur. Phys. J. A (2015) 51: 129
DOI 10.1140/epja/i2015-15129-5
Physics Opportunities with Meson Beams for EIC
[follow-up] (2021)
Strange Hadron Spectroscopy with Secondary KL Beam in Hall D
KLF Collaboration • Moskov Amaryan (Old Dominion U.) Show All(152)
Aug 18, 2020
[Preprint link]

Baryons in photoproduction

Experimental study of hadronic reactions

source: ELSA; data: ELSA, JLab, MAMI

Theoretical predictions of excited hadrons e.g. from lattice calculations:
(with some limitations)

$m_{\pi}=396 \mathrm{MeV}$ [Edwards et al., Phys.Rev. D84 (2011)]

$$
\gamma^{(*)} N \rightarrow\left\{\begin{array}{l}
\pi N \\
\eta N, K \Lambda, K \Sigma, \omega N, \phi N, \ldots \\
\pi \pi N, \pi \eta N, \ldots
\end{array}\right.
$$

SAID Data Base @ GW:

 https://gwdac.phys.gwu.edu/ New:- Changes from one PDG edition to another
- New states in red
- Upgrade existing states
- Removal older \& lower rated states
- All changes come from Partial-wave analysis (PWA) of photoninduced reactions.

Table from [Crede]

PDG Changes

N^{*}	$J^{P}\left(L_{22,2 J}\right)$	2010	2012	Δ	$J^{P}\left(L_{22,2 J}\right)$	2010	2012
p	$1 / 2^{+}\left(P_{11}\right)$	$* * * *$	$* * * *$	$\Delta(1232)$	$3 / 2^{+}\left(P_{33}\right)$	$* * * *$	$* * * *$
n	$1 / 2^{+}\left(P_{11}\right)$	$* * * *$	$* * * *$	$\Delta(1600)$	$3 / 2^{2}\left(P_{33}\right)$	$* * *$	$* * *$
$N(1440)$	$1 / 2^{+}\left(P_{11}\right)$	$* * * *$	$* * * *$	$\Delta(1620)$	$1 / 2^{-}\left(S_{31}\right)$	$* * * *$	$* * *$
$N(1520)$	$3 / 2^{-}\left(D_{13}\right)$	$* * * *$	$* * * *$	$\Delta(1700)$	$3 / 2^{-}\left(D_{33}\right)$	$* * * *$	$* * * *$
$N(1535)$	$1 / 2^{-}\left(S_{11}\right)$	$* * * *$	$* * * *$	$\Delta(1750)$	$1 / 2^{+}\left(P_{31}\right)$	$*$	$*$
$N(1650)$	$1 / 2^{-}\left(S_{11}\right)$	$* * * *$	$* * * *$	$\Delta(1900)$	$1 / 2^{-}\left(S_{31}\right)$	$* *$	$* *$
$N(1675)$	$5 / 2^{-}\left(D_{15}\right)$	$* * * *$	$* * * *$	$\Delta(1905)$	$5 / 2^{+}\left(F_{35}\right)$	$* * * *$	$* * *$
$N(1680)$	$5 / 2^{+}\left(F_{15}\right)$	$* * * *$	$* * * *$	$\Delta(1910)$	$1 / 2^{+}\left(P_{31}\right)$	$* * * *$	$* * *$
$N(1685)$			$*$				
$N(1700)$	$3 / 2^{-}\left(D_{13}\right)$	$* * *$	$* * *$	$\Delta(1920)$	$3 / 2^{+}\left(P_{33}\right)$	$* * *$	$* * *$
$N(1710)$	$1 / 2^{+}\left(P_{11}\right)$	$* * *$	$* * *$	$\Delta(1930)$	$5 / 2^{-}\left(D_{35}\right)$	$* * *$	$* *$
$N(1720)$	$3 / 2^{+}\left(P_{13}\right)$	$* * * *$	$* * * *$	$\Delta(1940)$	$3 / 2^{-}\left(D_{33}\right)$	$*$	$* *$
$N(1860)$	$5 / 2^{+}$		$* *$				
$N(1875)$	$3 / 2^{-}$		$* * *$				
$N(1880)$	12^{+}		$* *$				
$N(1895)$	$1 / 2^{-}$		$* *$				
$N(1900)$	$3 / 2^{+}\left(P_{13}\right)$	$* *$	$* * *$	$\Delta(1950)$	$7 / 2^{+}\left(F_{37}\right)$	$* * * *$	$* * * *$
$N(1990)$	$7 / 2^{+}\left(F_{17}\right)$	$* *$	$* *$	$\Delta(2000)$	$5 / 2^{+}\left(F_{35}\right)$	$* *$	$* *$
$N(2000)$	$5 / 2^{+}\left(F_{15}\right)$	$* *$	$* *$	$\Delta(2150)$	$1 / 2^{-}\left(S_{31}\right)$	$*$	$*$
$N(2080)$	D_{13}	$* *$		$\Delta(2200)$	$7 / 2^{-}\left(G_{37}\right)$	$*$	$*$
$N(2090)$	S_{11}	$*$		$\Delta(2300)$	$9 / 2^{+}\left(H_{39}\right)$	$* *$	$* *$
$N(2040)$	$3 / 2^{+}$		$*$				
$N(2060)$	$5 / 2^{-}$		$* *$				
$N(2100)$	$1 / 2^{+}\left(P_{11}\right)$	$*$	$*$	$\Delta(2350)$	$5 / 2^{-}\left(D_{35}\right)$	$*$	$*$
$N(2120)$	$3 / 2^{-}$		$* *$				
$N(2190)$	$7 / 2^{-}\left(G_{17}\right)$	$* * * *$	$* * * *$	$\Delta(2390)$	$7 / 2^{+}\left(F_{37}\right)$	$*$	$*$
$N(2200)$	D_{15}	$* *$		$\Delta(2400)$	$9 / 2^{-}\left(G_{39}\right)$	$* *$	$* *$
$N(2220)$	$9 / 2^{+}\left(H_{19}\right)$	$* * * *$	$* * * *$	$\Delta(2420)$	$11 / 2^{+}\left(H_{3,11}\right)$	$* * * *$	$* * * *$
$N(2250)$	$9 / 2^{-}\left(G_{19}\right)$	$* * * *$	$* * * *$	$\Delta(2750)$	$13 / 2^{-}\left(I_{3,13}\right)$	$* *$	$* *$
$N(2600)$	$11 / 2^{-}\left(I_{1,11}\right)$	$* * *$	$* * *$	$\Delta(2950)$	$15 / 2^{+}\left(K_{3,15)}\right)$	$* *$	$* *$
$N(2700)$	$13 / 2^{+}\left(K_{1,13}\right)$	$* *$	$* *$				

The role of meson beams in baryon spectroscopy

(Non-strange, light baryon sector)

- Pion-induced reactions
$\pi N \rightarrow\left\{\begin{array}{l}\pi N \\ \eta N, K \Lambda, K \Sigma \\ \pi \pi N, \pi \eta N, \ldots\end{array}\right.$

- Two complex amplitudes (g, h)
- Photon-induced reactions

$$
\gamma^{(*)} N \rightarrow\left\{\begin{array}{l}
\pi N \\
\eta N, K \Lambda, K \Sigma \\
\pi \pi N, \pi \eta N, \ldots
\end{array}\right.
$$

$$
\left\{\begin{array} { l }
{ \pi N } \\
{ \eta N , K \Lambda , K \Sigma } \\
{ \pi \pi N , \pi \eta N , \ldots }
\end{array} \leftrightarrow \left\{\begin{array}{l}
\pi N \\
\eta N, K \Lambda, K \Sigma \\
\pi \pi N, \pi \eta N, \ldots
\end{array}\right.\right.
$$

- Final-state interaction as sub-process
- Four (photo) or six (electro) complex amplitudes (CGNL, ...)

Photon-induced reactions have more d.o.f. and their analysis depends on meson-induced reaction data (except complete experiment).

Data

Data: η production

Example of recent improvements

Goal: Reduction of systematic uncertainties/ large body of consistent data

EPECUR experiment [Alekseev 2015] (blue) compared to previous measurements (black)

K-Long Facility

- Hyperon spectroscopy: Increased activity and analyses by

- Strange meson spectroscopy
- Broader physics scope [Proposal]
- To accomplish physics program, 200 days running is approved

Crossing Symmetry

- Consider another process by turning the scattering around:

$12 \rightarrow 34$

$1 \overline{3} \rightarrow \overline{2} 4$
- negative 0-components appear: $p_{30} \leq-m_{3}$ and $p_{20} \leq-m_{2}$
- interpretation of crossed process: anti-particle with $\bar{p}_{3}=-p_{3}$
- Crossed diagram describes another process; so called tchannel reaction:

$$
t=\left(p_{1}-p_{3}\right)^{2}=\left(p_{1}+\bar{p}_{3}\right)^{2} \geq\left(m_{1}+m_{3}\right)^{2}
$$

Crossed processes in λ^{3}

. s, t, and u-channel processes in λ^{3} theory:

$$
\text { Y } \left.\left.=\frac{\lambda^{2}}{m^{2}-s}, \quad\right]=\frac{\lambda^{2}}{m^{2}-t}, \quad\right] X=\frac{\lambda^{2}}{m^{2}-u}
$$

u-channel reactions

- Analogously, if $p_{40} \leq-m_{4}, p_{20} \leq-m_{2}: \quad 1+\overline{4} \rightarrow 3+\overline{2}$

$$
u=\left(p_{1}-p_{4}\right)^{2}=\left(p_{1}+\bar{p}_{4}\right)^{2} \geq\left(m_{1}+m_{4}\right)^{2}
$$

- In summary:

$$
\begin{array}{lll}
s \text {-channel : } & 1+2 \rightarrow 3+4, \quad s=\left(p_{1}+p_{2}\right)^{2} \geq\left(m_{1}+m_{2}\right)^{2} ; \\
t \text {-channel : } & 1+\overline{3} \rightarrow \overline{2}+4, \quad t=\left(p_{1}+\bar{p}_{3}\right)^{2} \geq\left(m_{1}+m_{3}\right)^{2} ; \\
u \text {-channel : } & 1+\overline{4} \rightarrow 3+\overline{2}, \quad u=\left(p_{1}+\bar{p}_{4}\right)^{2} \geq\left(m_{1}+m_{4}\right)^{2} . \quad 1 \overline{3} \rightarrow \overline{2} 4
\end{array}
$$

- There are 3 unitarity relations:
- s-channel unitarity
- t-channel unitarity
- u-channel unitarity

Analytic structure in the Mandelstam plane

- Again, s-, t-, and u-channel processes:

$$
\sum=\frac{\lambda^{2}}{m^{2}-s},
$$

- Induce poles in the amplitude, at position of physical particle mass (which is NOT m).

Amplitude real inside dotted triangle

Physical regions

fix t and consider amplitude as $f(s)$

Left- and right-hand cut

- The only non-analyticities on the first Riemann sheet:

Dispersive representation of the amplitude

- Cauchy's Theorem:

$$
\int_{\mathcal{C}} \frac{d z}{2 \pi i} \frac{A(z)}{z-s}=A(s)
$$

$\lambda^{2} /\left(m^{2}-t\right)$ does not fall with $s \rightarrow$ once-subtracted dispersion relation:
$A(s)-A(0)=\int_{\mathcal{C}} \frac{d z}{2 \pi i}\left[\frac{A(z)}{z-s}-\frac{A(z)}{z}\right]=\frac{s}{\pi} \int_{\mathcal{C}} \frac{d z}{2 i} \frac{A(z)}{z(z-s)}$
$\operatorname{Im}_{s} A \equiv \frac{1}{2 i}[A(s+i 0, t)-A(s-i 0, t)], \quad s>4 m^{2}$,
$\operatorname{Im}_{u} A \equiv \frac{1}{2 i}[A(u+i 0, t)-A(u-i 0, t)], \quad u>4 m^{2}$.
\rightarrow Simplify the expression!
Similar: Derive the real part of two-particle propagator G from its imaginary part (much simpler: no poles, no left-hand cut)

Example: Pion-nucleon scattering

forward scattering $t=0$:

$$
\begin{aligned}
& s=(p+k)^{2}=M^{2}+\mu^{2}+2 M \nu, \\
& u=\left(p-k^{\prime}\right)^{2}=M^{2}+\mu^{2}-2 M \nu=2\left(M^{2}+\mu^{2}\right)-s
\end{aligned}
$$

ν Energy of the pion in nucleon rest frame

$$
\begin{aligned}
& \begin{array}{l}
\nu= \\
= \\
2 M
\end{array} \frac{s-u}{M}=\frac{s-\left(M^{2}+\mu^{2}\right)}{M} \\
& f(\nu)= \frac{r}{\nu_{0}-\nu}+\frac{1}{\pi} \int_{\mu}^{\infty} \frac{d \nu^{\prime} \operatorname{Im} f\left(\nu^{\prime}\right)}{\nu^{\prime}-\nu} \quad-\quad-\mu \\
&-v_{0}
\end{aligned}
$$

As $f(-\nu)=f(\nu)$
for $\mathrm{f}=f_{+} \rightarrow$

$$
f(\nu)=f(0)+\frac{2 r}{\nu_{0}} \frac{\nu^{2}}{\nu_{0}^{2}-\nu^{2}}+\frac{\nu^{2}}{\pi} \int_{\mu}^{\infty} \frac{d \nu^{\prime 2}}{\nu^{\prime 2}} \frac{\operatorname{Im} f\left(\nu^{\prime}\right)}{\left(\nu^{\prime 2}-\nu^{2}\right)}
$$

Right-hand and left-hand cuts

- Pole positions of wide resonances might be distorted if "left-hand cut" is not taken properly into account (and: analyticity in $s, \operatorname{not} \sqrt{s}$)

- Build in crossing symmetry manifestly through Roy-(like equations)
[Peláez]

Advantage: $\pi \pi$ scattering in u-channel is still $\pi \pi$ πN : [Hoferichter]

Roy(-like) equations

Unphysical
region

$$
T(s, t, u)=\frac{1}{\pi} \int_{4 m^{2}}^{\infty} d s^{\prime} \frac{\operatorname{Im} T\left(s^{\prime}, t, u^{\prime}\right)}{s^{\prime}-s}+\frac{1}{\pi} \int_{-\infty}^{-t} d s^{\prime} \frac{\operatorname{Im} T\left(s^{\prime}, t, u^{\prime}\right)}{\left(s^{\prime}\right)-s}
$$

Subtraction

$$
\longrightarrow T^{(I)}(s, t)=T^{(I)}(0, t)+\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime}\left[\frac{\operatorname{Im} T^{(I)}\left(s^{\prime}, t\right)}{s^{\prime}\left(s^{\prime}-s\right)}-\frac{\operatorname{Im} T^{(I)}\left(u^{\prime}, t\right)}{\left(u^{\prime}\left(u^{\prime}-s\right)\right.}\right]
$$

Crossing relations:

$$
\begin{aligned}
& T^{(I)}(s, t)=7 \\
& s I^{\prime \prime} T^{\left(I^{\prime \prime}\right)}(t, 0)
\end{aligned}
$$

Only physical
 Region!

Roy-Eq.: $t_{\ell}^{(I)}(s)=\overline{S T}_{\ell}^{I}(s)+\sum_{I^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{\ell_{\max }} \int_{4 M_{\pi}^{2}}^{s_{\max }} d s^{\prime} \bar{K}_{\ell \ell^{\prime}}^{I I^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{I^{\prime}}\left(s^{\prime}\right)+\overline{D T}_{\ell}^{I}(s)$
Coupled partial waves

Causality and analyticity (1)

-4-point Green function $A\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)$

- $D(y-x)$: free particle propagation

$$
D\left(y_{\mu}-x_{\mu}\right)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d p_{0}}{2 \pi i} \frac{\exp \left\{-i p^{\mu}(y-x)_{\mu}\right\}}{m^{2}-p^{2}-i \epsilon}
$$

Causality and analyticity (2)

- As $y_{0}>x_{0}$, pole at $p_{0}=\sqrt{m^{2}+\mathbf{p}^{2}}$

$$
\begin{aligned}
D\left(y_{\mu}-x_{\mu}\right) & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{\exp \left\{-i p^{\mu}(y-x)_{\mu}\right\}}{2 p_{0}} \\
& =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \psi_{\mathbf{p}}(y) \cdot \psi_{\mathbf{p}}^{*}(x), \quad y_{0}>x_{0}
\end{aligned}
$$

- while for final state $x_{03}>y_{03}, x_{04}>y_{04}$

$$
D\left(y_{\mu}-x_{\mu}\right)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \psi_{\mathbf{p}}(x) \cdot \psi_{\mathbf{p}}^{*}(y), \quad x_{0}>y_{0}
$$

- Truncates amplitude f gets multiplied by product of wave functions.

Causality and analyticity (3): Amplitude in momentum space

- Fourier transform of f :

$$
\mathcal{M}\left(p_{i}\right)=\int f\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \mathrm{e}^{-i\left(p_{1} y_{1}+p_{2} y_{2}\right)+i\left(p_{3} y_{3}+p_{4} y_{4}\right)} \prod d^{4} y_{i}
$$

- Make it simple:
- Forward scattering $\quad p_{1} \approx p_{3}, p_{2} \approx p_{4}$
- Solve some integrals \rightarrow only dependence on relative positions, here chosen: $y_{13}=y_{1}-y_{3}$
$\mathcal{M} \Longrightarrow(2 \pi)^{4} \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \int \mathrm{e}^{i p_{1}\left(y_{3}-y_{1}\right)} f\left(y_{13} ; p_{2}\right) d^{4} y_{13}$
- Forward scattering \rightarrow Only dependence on one variable

Causality and analyticity (4):

- The amplitude is proportional to the absorption of a particle in y_{1} and creation in y_{3} (and reversely for anti-particle):

$$
\begin{array}{rlr}
f\left(y_{3}, y_{1}\right) & \propto\left\langle T \psi\left(y_{3}\right) \bar{\psi}\left(y_{1}\right)\right\rangle \quad \Delta y^{\mu}=y_{3}^{\mu}-y_{1}^{\mu} \\
& \equiv \vartheta\left(\Delta y_{0}\right) \cdot \psi\left(y_{3}\right) \bar{\psi}\left(y_{1}\right) \pm \vartheta\left(-\Delta y_{0}\right) \cdot \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right) \\
& =\vartheta\left(\Delta y_{0}\right)\left[\psi\left(y_{3}\right) \bar{\psi}\left(y_{1}\right) \mp \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right)\right] \pm \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right)
\end{array}
$$

(compare to the time evolution operator U in QM which is a time-ordered product; the S-matrix is actually a time-evolution operator)

- Consider now a space-like interval $(\Delta y)^{2}<0$
- The operators $\psi\left(y_{3}\right) \bar{\psi}\left(y_{1}\right)$ have to commute; otherwise, a person at y_{3} could tell what was measured at $y_{1} \rightarrow$ Causality!
- Then: $f\left(y_{3}, y_{1}\right) \propto \vartheta\left(\Delta y_{0}\right) \vartheta\left((\Delta y)^{2}\right) \cdot f_{1} \pm \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right)$
- Insert one in the last term:

$$
\langle 0| \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right)|0\rangle=\sum_{n}\langle 0| \bar{\psi}\left(y_{1}\right)|n\rangle \cdot\langle n| \psi\left(y_{3}\right)|0\rangle=\sum_{n}\left|C_{n}\right|^{2} \mathrm{e}^{-i P_{n}\left(y_{1}-y_{3}\right)}
$$

Causality and analyticity (5)

- We still have to integrate over y to get M (see previous slides):

$$
\sum_{n}\left|C_{n}^{2}\right| \int d^{4} y_{31} \mathrm{e}^{i p_{1} y_{31}} \cdot \mathrm{e}^{i P_{n} y_{31}} \propto \delta\left(p_{0,1}+P_{0, n}\right)=0
$$

- This has to be zero because all incoming, outgoing, intermediate particles have positive energy, e.g., $P_{0, n}>0$
- Finally, as $p_{1} y \equiv E_{1} t-\mathbf{p}_{1} \cdot \mathbf{y}=E_{1} \cdot\left(t-v_{1} z\right)^{\text {Projection of } \mathbf{y} \text { in } \mathbf{p}_{1}}$

$$
\mathcal{M}\left(E_{1}\right)=\int d^{4} y f_{1}(y) \cdot \vartheta\left(y_{0}\right) \vartheta\left(y_{\mu}^{2}\right) \mathrm{e}^{i p_{1} y}=\int d^{3} \mathbf{y} \int_{\sqrt{\mathbf{y}^{2}}}^{\infty} d t \mathrm{e}^{i E_{1}\left(t-v_{1} z\right)} f_{1}(y)
$$

- Make use of all delta-functions \rightarrow

$$
t>0, \quad t>\sqrt{z^{2}+\mathbf{y}^{\prime 2}} \geq|z|>\left|v_{1} z\right| \Longrightarrow\left(t-v_{1} z\right)>0
$$

- If $\operatorname{Im} E_{1}>0$ and f increases less than expon., M converges in the upper half plane.

Causality and analyticity (6)

- Implies the so-called polynomial boundary for $M(s)$

$$
|\mathcal{M}(s)|<|s|^{N}
$$

- Absolut converging integral \rightarrow Integration and differentiation can be interchanged.
- Cauchy relations:

$$
u=u(x, y), v=v(x, y), z=x+i y \rightarrow \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

- hold in the upper half plane with

$$
u=\operatorname{Re} \mathcal{M}, v=\operatorname{Im} \mathcal{M}, z=E_{1}
$$

- Cauchy relations fulfilled \leftrightarrow function analytic.

Conclusion: Causality ensures that there are no resonance poles in the upper energy half-plane ($1^{\text {st }}$ Riemann sheet)

Chiral trajectories in lattice OCD

- A lattice calculation at $\mathrm{M}_{\pi}=227 \mathrm{MeV}$ and 315 MeV [GWQCD, 1803.02897]
- σ becomes a (virtual) bound state @ $M_{\pi}=(345) 415 \mathrm{MeV}$

Light unflavored mesons

We concentrate on this resonance! (because 3-body)

Huge body of work on 2-body coupled channel resonances from Lattice QCD (HadSpec collaboration, BGR group, Bonn group, ...) [Briceno]

Exotic quantum numbers

- A $q \bar{q}$ pair cannot form all possible $\left(I^{G}\right) J^{P C}$ [Meyer]
- Finding a meson with exotic quantum numbers reveals explicit gluon dynamics at low energies (exp. programs @ COMPASS, GlueX,...)
- Exp. evidence for $\pi_{1}(1600)$ rather solid [PDG]
- Which are the allowed forbidden quantum numbers/naming?

Allowed

L	S	$J^{P C}$	L	S	$J^{P C}$	L	S	$J^{P C}$
0	0	0^{-+}	1	0	1^{+-}	2	0	2^{-+}
0	1	1^{--}	1	1	0^{++}	2	1	1^{--}
			1	1	1^{++}	2	1	2^{--}
			1	1	2^{++}	2	1	3^{--}

Some exotics ($J^{P C}=1^{-+}, \ldots$)

J^{P}				
normal meson exotic meson				
	name	$\left(I^{G}\right)$	name	$\left(I^{G}\right)$
0^{+}	a_{0}	$\left(1^{-}\right)$	b_{0}	$\left(1^{+}\right)$
1^{-}	ρ	$\left(1^{+}\right)$	π_{1}	$\left(1^{-}\right)$
2^{+}	a_{2}	$\left(1^{-}\right)$	b_{2}	$\left(1^{+}\right)$

- How can we determine these quantum numbers?

$$
P(q \bar{q})=-(-1)^{L} \quad C(q \bar{q})=(-1)^{L+S} \quad G(q \bar{q})=(-1)^{L+S+I}
$$

3.3 Scattering on a lattice

- Side length L, periodic boundary conditions $\Psi(\vec{x}) \stackrel{!}{=} \Psi\left(\vec{x}+\hat{\mathbf{e}}_{i} L\right)$
\rightarrow finite volume effects
\rightarrow Infinite volume $L \rightarrow \infty$ extrapolation
- Lattice spacing a \rightarrow finite size effects Modern lattice calculations: $a \simeq 0.07 \mathrm{fm} \rightarrow p \sim 2.8 \mathrm{GeV}$ \rightarrow (much) larger than typical hadronic scales;
not considered here.
- Unphysically large quark/hadron masses \rightarrow (chiral) extrapolation required.

3.1 Two-body scattering \& Lüscher equation

- Unitarity of the scattering matrix $S: S S^{\dagger}=\mathbb{1} \quad\left[S=\mathbb{1}-i \frac{p}{4 \pi E} T\right]$.

$$
\operatorname{Im} T^{-1}(E)=\sigma \equiv \frac{p}{8 \pi E}
$$

- \rightarrow Generic (Lippman-Schwinger) equation for unitarizing the T-matrix:

$$
T=V+V G T \quad \operatorname{Im} G=-\sigma
$$

V : (Pseudo)potential, σ : phase space.

- G : Green's function:

$$
\begin{aligned}
G & =\int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} \frac{f(|\vec{q}|)}{E^{2}-\left(\omega_{1}+\omega_{2}\right)^{2}+i \epsilon}, \\
\omega_{1,2}^{2} & =m_{1,2}^{2}+\vec{q}^{2}
\end{aligned}
$$

Periodic boundaries and discretization

$$
\Psi(\vec{x}) \stackrel{!}{=} \Psi\left(\vec{x}+\hat{\mathbf{e}}_{i} L\right)=\exp \left(i L q_{i}\right) \Psi(\vec{x}) \Longrightarrow q_{i}=\frac{2 \pi}{L} n_{i}, \quad n_{i} \in \mathbb{Z}, \quad i=1,2,3
$$

$$
\int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} g\left(|\vec{q}|^{2}\right) \rightarrow \frac{1}{L^{3}} \sum_{\vec{n}} g\left(|\vec{q}|^{2}\right), \quad \vec{q}=\frac{2 \pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^{3}
$$

$$
G \rightarrow \tilde{G}=\frac{1}{L^{3}} \sum_{\vec{q}} \frac{f(|\vec{q}|)}{E^{2}-\left(\omega_{1}+\omega_{2}\right)^{2}}
$$

- $E>m_{1}+m_{2}: \tilde{G}$ has poles at free energies in the box, $E=\omega_{1}+\omega_{2}$
- $E<m_{1}+m_{2}: \tilde{G} \rightarrow G$ exponentially with L (regular summation theorem).

The Lüscher equation

- Measured eigenvalues of the Hamiltonian (tower of lattice levels $E(L)$) \rightarrow Poles of scattering equation \tilde{T} in the finite volume \rightarrow determines V :

$$
\tilde{T}=(1-V \tilde{G})^{-1} V \rightarrow \quad V^{-1}-\tilde{G} \stackrel{!}{=} 0 \rightarrow V^{-1}=\tilde{G}
$$

- The interaction V determines the T-matrix in the infinite volume limit:

$$
T=\left(V^{-1}-G\right)^{-1}=(\tilde{G}-G)^{-1}
$$

- Re-derivation of Lüscher's equation (T determines the phase shift δ):

$$
p \cot \delta(p)=-8 \pi \sqrt{s}(\tilde{G}(E)-\operatorname{Re} G(E))
$$

- V and dependence on renormalization have disappeared (!)
- p : c.m. momentum
- E: scattering energy
- $\tilde{G}-\operatorname{Re} G$: known kinematical function ($\simeq \mathcal{Z}_{00}$ up to exponentially suppressed contributions)
- One phase at one energy.

2-body resonances in a box

An analogy for avoided level crossing

Resonance (system P2)
decouples from pions in a box
(system P1)

Resonance couples to boxed pions

Three-body quantization condition

Extraction of $a_{1}(1260)$ from IOCD

- First-ever three-body resonance from $1^{\text {st }}$ principles (with explicit three-body dynamics).

energy eigenvalues

volume-independent

Extraction of $\mathbf{a}_{\mathbf{1}}$ (1260) from IQCD

What does phenomenology says?

- $\tau \rightarrow(\pi \pi \pi) \nu_{\tau}$ from ALEPH@CERN
- fit to line shape to fix C

"Branching ratios" in 3B decays are momentum dependent, complex pole residues

