Lecture on Generalised Partons Distributions of Pseudo-Goldstone bosons and the nucleon

Cédric Mezrag

CEA Saclay, Irfu DPhN

October $21^{\text {st }}, 2021$

The 2021 School of Physics of Baryons

Introduction : probing the internal structure of matter

Scattering experiments

A key tool to understand the structure of matter

- Fraunhofer diffraction

Simulation of Fraunhofer diffraction due to a rectangle slit.
source : Wikimedia Commons

- Far field diffraction
- Diffraction
\rightarrow Fourier transform of transmission coefficient

Scattering experiments

A key tool to understand the structure of matter

- Fraunhofer diffraction
- X-ray scattering
- X-ray wavelength
$\rightarrow \lambda \simeq$ typical size
- Bragg Law
- Diffraction pattern
\rightarrow Fourier transform of electronic density
- Provide information on the cristal structure

Scattering experiments

A key tool to understand the structure of matter

- Fraunhofer diffraction
- X-ray scattering
- Rutherford experiment

- α particles scattering on a gold foil
- Some of which are scattered at large angles
- Invalidate the Thomson Model (Plum Pudding)
- Allows to develop the Rutherford planetary model
source : Wikimedia Commons

A pattern a study matter

- Scattering without breaking
- Fourier transform relation between matter structure and diffraction figure
- Repeat itself for different orders of magnitude
- Can we extend that to hadron structure?

A pattern a study matter

- Scattering without breaking
- Fourier transform relation between matter structure and diffraction figure
- Repeat itself for different orders of magnitude
- Can we extend that to hadron structure?

A pattern a study matter

- Scattering without breaking
- Fourier transform relation between matter structure and diffraction figure
- Repeat itself for different orders of magnitude
- Can we extend that to hadron structure?

Large virtuality and factorisation

- When the photon is strongly virtual : $Q^{2}=-q^{2} \gg M^{2}, t$

- Decomposition of DVCS between perturbative (green) and non-perturbative (blue) subparts.
- Perturbative part \rightarrow description of the interaction between the probe and a parton inside hadron
- Non-perturbative part : description of a parton hadron amplitude called Generalised Partons Distributions (GPDs)
- GPDs is where the information on the hadrons structure lies.

Generalised Parton Distributions

References

- General review on GPDs: M. Diehl, Phys.Rept., 2003, 388, 41-277
A. Belitsky and A. Radyushkin, Phys.Rept., 2005, 418, 1-387
- Modern phenomenological applications K. Kumericki et al., Eur. Phys. J., 2016, A52, 157
- Future experimental opportunities EIC Yellow Report, arXiv:2103.05419

Definitions and some properties

Formal Definition for the pion

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996)

Formal Definition for the pion

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, \mathrm{z}=0}
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
A. Radyushkin, Phys. Lett. B380, 417 (1996)

- x : average momentum fraction carried by the active parton along the lightcone

Formal Definition for the pion

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
A. Radyushkin, Phys. Lett. B380, 417 (1996)

- x : average momentum fraction carried by the active parton along the lightcone
- $\xi=-2 \Delta \cdot n / P \cdot n$ is the skewness parameter $\xi \simeq \frac{x_{B}}{2-x_{B}}$
- $t=\Delta^{2}$: the Mandelstam variable

Formal Definition for the pion

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996)

- x : average momentum fraction carried by the active parton along the lightcone
- $\xi=-2 \Delta \cdot n / P \cdot n$ is the skewness parameter $\xi \simeq \frac{x_{B}}{2-x_{B}}$
- $t=\Delta^{2}$: the Mandelstam variable
- Caveat! In gauges other than the lightcone one, a Wilson line is necessary to make the GPDs gauge invariant

Kinematical Range

Different values of (x, ξ) yields different lightfront interpretations:

- Modifies our understanding of what is probed
- Different type of contributions
- It determines two big regions
- Relevant for evolution equations
- $|\xi|>1$ region of Generalised Distribution Amplitudes (GDA)

Connection with the PDF

Coming back to the definition:

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, \mathrm{z}=0}
\end{aligned}
$$

Connection with the PDF

Coming back to the definition:

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

When $\Delta \rightarrow 0$, then $\left(\xi=-2 \Delta \cdot n / P \cdot n ; t=\Delta^{2}\right) \rightarrow(0,0)$

Connection with the PDF

Coming back to the definition:

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

When $\Delta \rightarrow 0$, then $\left(\xi=-2 \Delta \cdot n / P \cdot n ; t=\Delta^{2}\right) \rightarrow(0,0)$

$$
\begin{aligned}
& H_{\pi}^{q}(x, 0,0)=q(x) \Theta(x)-\bar{q}(-x) \Theta(-x) \\
& H_{\pi}^{g}(x, 0,0)=x g(x) \Theta(x)-x g(-x) \Theta(-x)
\end{aligned}
$$

In the limit $(\xi, t) \rightarrow(0,0)$, one recover the PDFs.

Connection with the form factor

Looking at the quark definition:

$$
H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
$$

we would recover the Form Factor if we could make the operator "local".

Connection with the form factor

Looking at the quark definition:

$$
H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, \mathrm{z}=0}
$$

we would recover the Form Factor if we could make the operator "local". Simple way to do that \rightarrow integrate on Fourier conjugate variable:

$$
\begin{aligned}
\int \mathrm{d} x H_{\pi}^{q}(x, \xi, t) & =\left.\frac{1}{2} \int \delta\left(P^{+} z^{-}\right)\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}(0) \gamma^{+} \psi^{q}(0)\left|P-\frac{\Delta}{2}\right\rangle
\end{aligned}
$$

Connection with the form factor

Looking at the quark definition:

$$
H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
$$

we would recover the Form Factor if we could make the operator "local". Simple way to do that \rightarrow integrate on Fourier conjugate variable:

$$
\begin{aligned}
\int \mathrm{d} x H_{\pi}^{q}(x, \xi, t) & =\left.\frac{1}{2} \int \delta\left(P^{+} z^{-}\right)\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}(0) \gamma^{+} \psi^{q}(0)\left|P-\frac{\Delta}{2}\right\rangle
\end{aligned}
$$

We recover the pion electromagnetique Form Factor

The soft pion theorem

- It relates the pion GPD to the pion Distribution Amplitude (DA)
- The standard proof is more technical, and involve Generalised Distribution Amplitudes (GDAs):
- First relate GDA (two pions DA) to the standard DA in the low energy limit (PCAC)
- Then use crossing symmetry to connect the GDA to the GPD
M. Polyakov, Nucl.Phys.B 555 (1999) 231
- An alternative proof based on the Bethe-Salpeter formalism is available (no crossing symmetry but a simplified description of the pion)
C. Mezrag et al., Phys.Lett.B 741 (2015) 190-196

The soft pion theorem

- It relates the pion GPD to the pion Distribution Amplitude (DA)
- The standard proof is more technical, and involve Generalised Distribution Amplitudes (GDAs):
- First relate GDA (two pions DA) to the standard DA in the low energy limit (PCAC)
- Then use crossing symmetry to connect the GDA to the GPD
M. Polyakov, Nucl.Phys.B 555 (1999) 231
- An alternative proof based on the Bethe-Salpeter formalism is available (no crossing symmetry but a simplified description of the pion)
C. Mezrag et al., Phys.Lett.B 741 (2015) 190-196

$$
\begin{aligned}
& H_{\pi}^{q}(x, 1,0)+H_{\pi}^{q}(-x, 1,0)=\varphi\left(\frac{1+x}{2}\right) \\
& H_{\pi}^{q}(x, 1,0)-H_{\pi}^{q}(-x, 1,0)=0
\end{aligned}
$$

GPD and the hadron $2+1$ Structure

Prerequisite

- Hadron description in coordinate space: position of its center of mass in the transverse plane

GPD and the hadron $2+1$ Structure

Prerequisite

- Hadron description in coordinate space: position of its center of mass in the transverse plane
- Necessary to define a "center of mass" of the hadron!
- Turn to Galileen subgroup acting in the 2D transverse plane
- It yields a centre of mass w.r.t. the p_{i}^{+}

$$
b_{\perp}=\frac{\sum_{i} p_{i}^{+} b_{\perp}^{i}}{\sum_{i} p_{i}^{+}}
$$

- Hadron description in coordinate space: position of its center of mass in the transverse plane
- Necessary to define a "center of mass" of the hadron !
- Turn to Galileen subgroup acting in the 2D transverse plane
- It yields a centre of mass w.r.t. the p_{i}^{+}

$$
b_{\perp}=\frac{\sum_{i} p_{i}^{+} b_{\perp}^{i}}{\sum_{i} p_{i}^{+}}
$$

Immediate consequences for GPDs

GPDs encode a kick in the momentum fraction along the lightfront of 2ξ \rightarrow unless $\xi=0$ the "centre of mass" is modified between the initial and final Proton

- Hadron description in coordinate space: position of its center of mass in the transverse plane
- Necessary to define a "center of mass" of the hadron!
- Turn to Galileen subgroup acting in the 2D transverse plane
- It yields a centre of mass w.r.t. the p_{i}^{+}

$$
b_{\perp}=\frac{\sum_{i} p_{i}^{+} b_{\perp}^{i}}{\sum_{i} p_{i}^{+}}
$$

Immediate consequences for GPDs

GPDs encode a kick in the momentum fraction along the lightfront of 2ξ \rightarrow unless $\xi=0$ the "centre of mass" is modified between the initial and final Proton

A probabilistic interpretation can be obtained only for $\xi=0$

GPD and the hadron $2+1$ Structure

Examples of $2+1 \mathrm{D}$ pictures

cea

$$
\begin{aligned}
\rho\left(x, \tilde{b}_{\perp}\right)= & \int \frac{\mathrm{d}^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{i \Delta_{\perp} \tilde{b}_{\perp}} H\left(x, 0,-\Delta_{\perp}^{2}\right) \\
& \text { M. Burkardt, PRD } 62 \text { (2000) 071503, PRD } 66 \text { (2002) } 119903 \text { (erratum) }
\end{aligned}
$$

Computations

fig. from C. Mezrag et al., PLB 741 (2015)

Place of GPDs in the Hadron physics context

figure from A. Accardi et al., Eur.Phys.J.A 52 (2016) 9, 268

Interpretation of GPDs II

Connection to the Energy-Momentum Tensor

How energy, momentum, pressure are shared between quarks and gluons

Caveat: renormalization scheme and scale dependence
C. Lorcé et al., PLB 776 (2018) 38-47,
M. Polyakov and P. Schweitzer,

IJMPA 33 (2018) 26, 1830025
C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

Interpretation of GPDs II

Connection to the Energy-Momentum Tensor
$c^{-2} \cdot\binom{$ energy }{ density }
momentum
density

How energy, momentum, pressure are shared between quarks and gluons

Caveat: renormalization scheme and scale dependence
C. Lorcé et al., PLB 776 (2018) 38-47,
M. Polyakov and P. Schweitzer,

IJMPA 33 (2018) 26, 1830025
C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

$$
\left\langle p^{\prime}\right| T_{q, g}^{\mu \nu}|p\rangle=2 P^{\mu} P^{\nu} A_{q, g}(t ; \mu)+\frac{1}{2}\left(\Delta^{\mu} \Delta^{\nu}-g^{\mu \nu} \Delta^{2}\right) C_{q, g}(t ; \mu)+2 M^{2} g^{\mu \nu} \bar{C}_{q, g}(t ; \mu)
$$

Interpretation of GPDs II

Connection to the Energy-Momentum Tensor

How energy, momentum, pressure are shared between quarks and gluons

Caveat: renormalization scheme and scale dependence
C. Lorcé et al., PLB 776 (2018) 38-47,
M. Polyakov and P. Schweitzer, IJMPA 33 (2018) 26, 1830025
C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

$$
\left\langle p^{\prime}\right| T_{q, g}^{\mu \nu}|p\rangle=2 P^{\mu} P^{\nu} A_{q, g}(t ; \mu)+\frac{1}{2}\left(\Delta^{\mu} \Delta^{\nu}-g^{\mu \nu} \Delta^{2}\right) C_{q, g}(t ; \mu)+2 M^{2} g^{\mu \nu} \bar{C}_{q, g}(t ; \mu)
$$

$$
\int_{-1}^{1} \mathrm{~d} \times \times H_{q}(x, \xi, t ; \mu)=A_{q}(t ; \mu)+\xi^{2} C_{q}(t ; \mu)
$$

- Ji sum rule (nucleon)
- Fluid mechanics analogy
X. Ji, PRL 78, 610-613 (1997) M.V. Polyakov PLB 555, 57-62 (2003)

Questions ?

Polynomiality and its consequences

Mellin Moments of GPDs

Connection with local operators

We can generalise what we obtained on the EFF for higher moments:

$$
\begin{aligned}
\int \mathrm{d} x x^{m} H(x, \xi, t) & =\left.\frac{1}{2} \int \mathrm{~d} x x^{m} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\left.\int \frac{\mathrm{d} x}{2\left(i P^{+}\right)^{m}} \frac{\mathrm{~d}^{m}}{\left(\mathrm{~d} z^{-}\right)^{m}}\left[\frac{e^{i x P^{+} z^{-}}}{2 \pi}\right]\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0} ^{\mid=0}
\end{aligned}
$$

Mellin Moments of GPDs

Connection with local operators

We can generalise what we obtained on the EFF for higher moments:

$$
\begin{aligned}
\int \mathrm{d} x x^{m} H(x, \xi, t) & =\left.\frac{1}{2} \int \mathrm{~d} x x^{m} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\left.\int \frac{\mathrm{d} x}{2\left(i P^{+}\right)^{m}} \frac{\mathrm{~d}^{m}}{\left(\mathrm{~d} z^{-}\right)^{m}}\left[\frac{e^{i x P^{+} z^{-}}}{2 \pi}\right]\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0} ^{\mid=0} \\
& =\left.\frac{i^{m}}{2\left(P^{+}\right)^{m+1}}\left\langle P+\frac{\Delta}{2}\right| \frac{\mathrm{d}}{\mathrm{~d} z^{-}}\left[\bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\right]\left|P-\frac{\Delta}{2}\right\rangle\right|_{z=0} \\
& =\frac{1}{2\left(P^{+}\right)^{m+1}}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}(0) \gamma^{+}(i \overleftrightarrow{\partial}+)^{m} \psi^{q}(0)\left|P-\frac{\Delta}{2}\right\rangle
\end{aligned}
$$

- we recover local operators as in DIS $\mathcal{O}^{\mu \mu_{1} \ldots \mu_{m}}=\mathbf{S} \bar{\psi} \gamma^{\mu} \overleftrightarrow{\partial}^{\mu_{1}} \ldots \overleftrightarrow{\partial}^{\mu_{m}} \psi$
- ... but evaluated between off-diagonal states

Mellin Moments of GPDs

Polynomiality property

cea

$$
\begin{aligned}
& \int \mathrm{d} x x^{m} H(x, \xi, t)=\frac{1}{2\left(P^{+}\right)^{m+1}}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}(0) \gamma^{+}\left(i \overleftrightarrow{\partial}^{+}\right)^{m} \psi^{q}(0)\left|P-\frac{\Delta}{2}\right\rangle \\
& =\frac{1}{\left(P^{+}\right)^{m}} \sum_{\substack{i=0 \\
\text { even }}}^{m} A_{i, m}(t) \Delta^{\mu_{1}} \ldots \Delta^{\mu_{i}} P^{\mu_{i+1}} \ldots P^{\mu_{m}} n_{\mu_{1}} \ldots n_{\mu_{m}}+\bmod (m, 2)\left(\frac{\Delta^{+}}{P^{+}}\right)^{m+1} C_{m+1}(t) \\
& =\sum_{\substack{i=0 \\
\text { even }}}^{m} A_{i, m}(t)(-2 \xi)^{i}+\bmod (m, 2)(-2 \xi)^{m+1} C_{m+1}(t)
\end{aligned}
$$

Mellin Moments of GPDs

Polynomiality property

$$
\begin{aligned}
& \int \mathrm{d} x x^{m} H(x, \xi, t)=\frac{1}{2\left(P^{+}\right)^{m+1}}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}(0) \gamma^{+}\left(i \overleftrightarrow{\partial}^{+}\right)^{m} \psi^{q}(0)\left|P-\frac{\Delta}{2}\right\rangle \\
& =\frac{1}{\left(P^{+}\right)^{m}} \sum_{\substack{i=0 \\
\text { even }}}^{m} A_{i, m}(t) \Delta^{\mu_{1}} \ldots \Delta^{\mu_{i}} P^{\mu_{i+1}} \ldots P^{\mu_{m}} n_{\mu_{1}} \ldots n_{\mu_{m}}+\bmod (m, 2)\left(\frac{\Delta^{+}}{P^{+}}\right)^{m+1} C_{m+1}(t) \\
& =\sum_{\substack{i=0 \\
\text { even }}}^{m} A_{i, m}(t)(-2 \xi)^{i}+\bmod (m, 2)(-2 \xi)^{m+1} C_{m+1}(t)
\end{aligned}
$$

Mellin Moments of GPDs are even polynomials in ξ of a given degree !

- $A_{0, m}(0)$ are the moments of the PDF
- $A_{0,0}(t)$ is proportional to the form factor
- $C_{m+1}(t)$ are the Mellin moment of a new object: the D-term

Introducing the D-term

- We want to define a function D so that for odd m :

$$
\int_{-1}^{1} \mathrm{~d} y y^{m} D(y, t)=(-2)^{m+1} C_{m+1}(t)
$$

Introducing the D-term

- We want to define a function D so that for odd m :

$$
\int_{-1}^{1} \mathrm{~d} y y^{m} D(y, t)=(-2)^{m+1} C_{m+1}(t)
$$

- What is the connection between y, x and ξ (we stick to $\xi>0$)?

$$
\begin{aligned}
\sum_{\substack{i=0 \\
\text { even }}}^{m} A_{i, m}(t)(-2 \xi)^{i} & =\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)-\xi^{m+1} \int_{-1}^{1} \mathrm{~d} y y^{m} D(y, t) \\
& =\int_{-1}^{1} \mathrm{~d} x x^{m}\left[H(x, \xi, t)-\Theta(-\xi \leq x \leq \xi) D\left(\frac{x}{\xi}, t\right)\right]
\end{aligned}
$$

Introducing the D-term

- We want to define a function D so that for odd m :

$$
\int_{-1}^{1} \mathrm{~d} y y^{m} D(y, t)=(-2)^{m+1} C_{m+1}(t)
$$

- What is the connection between y, x and ξ (we stick to $\xi>0$)?

$$
\begin{aligned}
\sum_{\substack{i=0 \\
\text { even }}}^{m} A_{i, m}(t)(-2 \xi)^{i} & =\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)-\xi^{m+1} \int_{-1}^{1} \mathrm{~d} y y^{m} D(y, t) \\
& =\int_{-1}^{1} \mathrm{~d} x x^{m}\left[H(x, \xi, t)-\Theta(-\xi \leq x \leq \xi) D\left(\frac{x}{\xi}, t\right)\right]
\end{aligned}
$$

- D-term is a function of 2 variables only! (like the PDF)
- It lives only in the so-called ERBL region

Consequence of Polynomiality

$$
\sum_{\substack{i=0 \\ \text { even }}}^{m} A_{i, m}(t)(-2 \xi)^{i}=\int_{-1}^{1} \mathrm{~d} x x^{m}\left[H(x, \xi, t)-\Theta(-\xi \leq x \leq \xi) D\left(\frac{x}{\xi}, t\right)\right]
$$

- After introducing the D-term, we obtained a new polynomiality relation with the same power on the left and right-hand side.

Consequence of Polynomiality

$$
\sum_{\substack{i=0 \\ \text { even }}}^{m} A_{i, m}(t)(-2 \xi)^{i}=\int_{-1}^{1} \mathrm{~d} x x^{m}\left[H(x, \xi, t)-\Theta(-\xi \leq x \leq \xi) D\left(\frac{x}{\xi}, t\right)\right]
$$

- After introducing the D-term, we obtained a new polynomiality relation with the same power on the left and right-hand side.
- This has an important consequence: in mathematics, this relation is called th Lugwig-Helgason condition
O. Teryaev, PLB510 125-132 (2001)
N. Chouika et al., EPJC 77906 (2017)

Consequence of Polynomiality

$$
\sum_{\substack{i=0 \\ \text { even }}}^{m} A_{i, m}(t)(-2 \xi)^{i}=\int_{-1}^{1} \mathrm{~d} x x^{m} \underbrace{\left[H(x, \xi, t)-\Theta(-\xi \leq x \leq \xi) D\left(\frac{x}{\xi}, t\right)\right]}_{\text {Radon transform of a double distribution }}
$$

- After introducing the D-term, we obtained a new polynomiality relation with the same power on the left and right-hand side.
- This has an important consequence: in mathematics, this relation is called th Lugwig-Helgason condition

> O. Teryaev, PLB510 125-132 (2001)
> N. Chouika et al., EPJC 77906 (2017)

- It implies that $H-D$ is the Radon transform of a third function, called a Double Distribution F.

Radon transform and Double Distributions

- The connection between GPDs and DDs is given through:

$$
H(x, \xi, t)-\Theta(-\xi \leq x \leq \xi) D\left(\frac{x}{\xi}, t\right)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi) F(\beta, \alpha, t)
$$

A. Radysuhkin, PRD 56 (1997) 5524-5557
D. Müller et al., Fortsch. Phy. 42101 (1994)

- The D-term can be reabsorbed as:

$$
H(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi)[F(\beta, \alpha, t)+\xi \delta(\beta) D(\alpha, t)]
$$

M. Polyakov and C. Weiss, PRD60 114017 (1999)

- The properties of the DD guarantee the one of the GPD

Polynomiality revisited with DD

- Polynomiality of GPDs Mellin moments is equivalent to the existence of the DDs.

Polynomiality revisited with DD

- Polynomiality of GPDs Mellin moments is equivalent to the existence of the DDs.
- In fact, generalised form factors $A_{i, m}(t)$ can be reinterpreted in terms of DDs:

$$
\begin{aligned}
\int \mathrm{d} x x^{m} H(x, \xi, t) & =\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(\beta+\alpha \xi)^{m} F(\beta, \alpha, t)+\xi^{m+1} \int_{-1}^{1} \mathrm{~d} \alpha \alpha^{m} D(\alpha, t) \\
& =\sum_{i}^{m} \xi^{i} \underbrace{\binom{m}{i} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \alpha^{i} \beta^{m-i} F(\beta, \alpha, t)}_{=(-2)^{i} A_{i, m}(t)}++\xi^{m+1} \underbrace{\int_{-1}^{1} \mathrm{~d} \alpha \alpha^{m} D(\alpha, t)}_{=(-2)^{m+1} C_{m+\mathbf{1}}(t)}
\end{aligned}
$$

Polynomiality revisited with DD

- Polynomiality of GPDs Mellin moments is equivalent to the existence of the DDs.
- In fact, generalised form factors $A_{i, m}(t)$ can be reinterpreted in terms of DDs:

$$
\begin{aligned}
\int \mathrm{d} x x^{m} H(x, \xi, t) & =\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(\beta+\alpha \xi)^{m} F(\beta, \alpha, t)+\xi^{m+1} \int_{-1}^{1} \mathrm{~d} \alpha \alpha^{m} D(\alpha, t) \\
& =\sum_{i}^{m} \xi^{i} \underbrace{\binom{m}{i} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \alpha^{i} \beta^{m-i} F(\beta, \alpha, t)}_{=(-2)^{i} A_{i, m}(t)}++\xi^{m+1} \underbrace{\int_{-1}^{1} \mathrm{~d} \alpha \alpha^{m} D(\alpha, t)}_{=(-2)^{m+1} C_{m+1}(t)}
\end{aligned}
$$

- A direct consequence is the link between the DD and the PDF:

$$
q(x)=\int_{-1+|x|}^{1-|x|} \mathrm{d} \alpha F(x, \alpha, 0)
$$

Model of Double Distributions

- Many GPDs models rely on DD in order to fulfil the polynomiality condition.
- The most common way is to use the Radyushkin DD Ansatz:

$$
\begin{aligned}
F(\beta, \alpha, t) & =q(\beta, t) \times \pi_{N}(\beta, \alpha) \\
\pi_{N}(\beta, \alpha) & =\frac{\Gamma\left(N+\frac{3}{2}\right)}{\sqrt{\pi} \Gamma(N+1)} \frac{\left((1-|\beta|)^{2}-\alpha^{2}\right)^{N}}{(1-|\beta|)^{2 N+1}} \\
1 & =\int_{-1+|\beta|}^{1-|\beta|} \mathrm{d} \alpha \pi_{N}(\beta, \alpha)
\end{aligned}
$$

Musatov, I.V. and Radyushkin, A.V., PRD61 074027 (2000)

Model of Double Distributions

- Many GPDs models rely on DD in order to fulfil the polynomiality condition.
- The most common way is to use the Radyushkin DD Ansatz:

$$
\begin{aligned}
F(\beta, \alpha, t) & =q(\beta, t) \times \pi_{N}(\beta, \alpha) \\
\pi_{N}(\beta, \alpha) & =\frac{\Gamma\left(N+\frac{3}{2}\right)}{\sqrt{\pi} \Gamma(N+1)} \frac{\left((1-|\beta|)^{2}-\alpha^{2}\right)^{N}}{(1-|\beta|)^{2 N+1}} \\
1 & =\int_{-1+|\beta|}^{1-|\beta|} \mathrm{d} \alpha \pi_{N}(\beta, \alpha)
\end{aligned}
$$

Musatov, I.V. and Radyushkin, A.V., PRD61 074027 (2000)

- This was used for many model, both on the nucleon and the pion several reasons:
- Simple to implement
- Gives results driven by the PDF (much better known)
- It allows to fulfil easily the GPDs sum rules (connection to EFF)

Model of Double Distributions

- Many GPDs models rely on DD in order to fulfil the polynomiality condition.
- The most common way is to use the Radyushkin DD Ansatz:

$$
\begin{aligned}
F(\beta, \alpha, t) & =q(\beta, t) \times \pi_{N}(\beta, \alpha) \\
\pi_{N}(\beta, \alpha) & =\frac{\Gamma\left(N+\frac{3}{2}\right)}{\sqrt{\pi} \Gamma(N+1)} \frac{\left((1-|\beta|)^{2}-\alpha^{2}\right)^{N}}{(1-|\beta|)^{2 N+1}} \\
1 & =\int_{-1+|\beta|}^{1-|\beta|} \mathrm{d} \alpha \pi_{N}(\beta, \alpha)
\end{aligned}
$$

Musatov, I.V. and Radyushkin, A.V., PRD61 074027 (2000)

- This was used for many model, both on the nucleon and the pion several reasons:
- Simple to implement
- Gives results driven by the PDF (much better known)
- It allows to fulfil easily the GPDs sum rules (connection to EFF)
- However, this functional form has been shown not to be a very flexible fitting parametrisation

[^0]
Covariant computations and DD

- DDs naturally appear in explicitly covariant computations

- Inserting local operators, one recovers polynomials in ξ and therefore DDs.
B.C. Tiburzi and G. A. Miller, PRD 67 (2003) 113004
C. Mezrag et al., arXiv:1406.7425 and FBS 57 (2016) 9, 729-772

Covariant computations and DD

- DDs naturally appear in explicitly covariant computations

- Inserting local operators, one recovers polynomials in ξ and therefore DDs.

> B.C. Tiburzi and G. A. Miller, PRD 67 (2003) 113004
> C. Mezrag et al., arXiv:1406.7425 and FBS $57(2016) 9,729-772$

- However these computations suffer from other issue, for instance regarding the so-called positivity property.

The lightfront wave functions (LFWFs) formalism

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Phi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Phi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Phi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Phi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

see for instance S. Brodsky et al., Phys.Rept.S 301 (1998) 299-486

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Phi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Phi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Phi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Phi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Φ^{N}
see for instance S. Brodsky et al., Phys.Rept.S 301 (1998) 299-486

LFWFs

- Momentum information for each parton:
- Momentum fraction along the lightcone x_{i} carried by each partons such that $\sum_{i}^{N} x_{i}=1$ with $0 \leq x_{i} \leq 1$.
- Momentum in the transverse plane $k_{\perp, i}$ for each parton
- other quantum number such as parton spin projection
- Momentum information for each parton:
- Momentum fraction along the lightcone x_{i} carried by each partons such that $\sum_{i}^{N} x_{i}=1$ with $0 \leq x_{i} \leq 1$.
- Momentum in the transverse plane $k_{\perp, i}$ for each parton
- other quantum number such as parton spin projection

Example: pion

The pion has two independent two-body LFWFs:

$$
|\pi, P\rangle=\int\left[\mathrm{d} x_{i} \mathrm{~d}^{2} k_{\perp, i}\right]\left[\phi_{q_{1} q_{2}}^{\uparrow \downarrow}\left(x_{i}, k_{\perp, i}\right)\left|q_{1}(\uparrow) q_{2}(\downarrow)\right\rangle+\phi_{q_{1} q_{2}}^{\uparrow \uparrow}\left(x_{i}, k_{\perp, i}\right)\left|q_{1}(\uparrow) q_{2}(\uparrow)\right\rangle\right]+\ldots
$$

- Momentum information for each parton:
- Momentum fraction along the lightcone x_{i} carried by each partons such that $\sum_{i}^{N} x_{i}=1$ with $0 \leq x_{i} \leq 1$.
- Momentum in the transverse plane $k_{\perp, i}$ for each parton
- other quantum number such as parton spin projection

Example: pion

The pion has two independent two-body LFWFs:
$|\pi, P\rangle=\int\left[\mathrm{d} x_{i} \mathrm{~d}^{2} k_{\perp, i}\right][\underbrace{\phi_{q_{1} q_{2}}^{\uparrow \downarrow}\left(x_{i}, k_{\perp, i}\right)}_{\text {OAM projection }=0}\left|q_{1}(\uparrow) q_{2}(\downarrow)\right\rangle+\underbrace{\phi_{q_{1}}^{\uparrow \uparrow}\left(x_{2}, x_{i}, k_{\perp, i}\right)}_{\text {OAM projection }=-1}\left|q_{1}(\uparrow) q_{2}(\uparrow)\right\rangle]+\ldots$

Overlap of LFWFs and GPDs

- Starting from the matrix element:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

Overlap of LFWFs and GPDs

- Starting from the matrix element:

$$
\underbrace{\left\langle\pi, P+\frac{\Delta}{2}\right|}_{\text {Fock expansion }} \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right) \underbrace{\left|\pi, P-\frac{\Delta}{2}\right\rangle}_{\text {Fock expansion }}
$$

Overlap of LFWFs and GPDs

- Starting from the matrix element:

$$
\begin{gathered}
\underbrace{\left\langle\pi, P+\frac{\Delta}{2}\right|}_{\text {Fock expansion }} \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right) \underbrace{\left|\pi, P-\frac{\Delta}{2}\right\rangle}_{\text {Fock expansion }} \\
=\left[\int\left[\mathrm{d} x_{i} \mathrm{~d}^{2} k_{\perp, j}\right]\left(\phi_{q_{1} q_{2}}^{\uparrow \downarrow}\right)^{*}\left\langle q_{1} q_{2}\right|+\ldots\right] \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left[\int\left[\mathrm{d} x_{i}^{\prime} \mathrm{d}^{2} k_{\perp, i}^{\prime}\right] \phi_{q_{1} q_{2}}^{\uparrow \downarrow}\left|q_{1} q_{2}\right\rangle+\ldots\right]
\end{gathered}
$$

Overlap of LFWFs and GPDs

- Starting from the matrix element:

$$
\begin{gathered}
\underbrace{\left\langle\pi, P+\frac{\Delta}{2}\right|}_{\text {Fock expansion }} \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right) \underbrace{\left|\pi, P-\frac{\Delta}{2}\right\rangle}_{\text {Fock expansion }} \\
=\left[\int\left[\mathrm{d} x_{i} \mathrm{~d}^{2} k_{\perp, i}\right]\left(\phi_{q_{1} q_{2}}^{\uparrow \downarrow}\right)^{*}\left\langle q_{1} q_{2}\right|+\ldots\right] \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left[\int\left[\mathrm{d} x_{i}^{\prime} \mathrm{d}^{2} k_{\perp, i}^{\prime}\right] \phi_{q_{1} q_{2}}^{\uparrow \downarrow}\left|q_{1} q_{2}\right\rangle+\ldots\right]
\end{gathered}
$$

- The operator $\bar{\psi} \gamma^{+} \psi$ can be evaluated between partonic states:

$$
\left\langle q_{1} q_{2}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left|q_{1} q_{2}\right\rangle
$$

Overlap of LFWFs and GPDs

- Starting from the matrix element:

$$
\begin{gathered}
\underbrace{\left\langle\pi, P+\frac{\Delta}{2}\right|}_{\text {Fock expansion }} \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right) \underbrace{\left|\pi, P-\frac{\Delta}{2}\right\rangle}_{\text {Fock expansion }} \\
=\left[\int\left[\mathrm{d} x_{i} \mathrm{~d}^{2} k_{\perp, j}\right]\left(\phi_{q_{1} q_{2}}^{\uparrow \downarrow}\right)^{*}\left\langle q_{1} q_{2}\right|+\ldots\right] \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left[\int\left[\mathrm{d} x_{i}^{\prime} \mathrm{d}^{2} k_{\perp, i}^{\prime}\right] \phi_{q_{1} q_{2}}^{\uparrow \downarrow}\left|q_{1} q_{2}\right\rangle+\ldots\right]
\end{gathered}
$$

- The operator $\bar{\psi} \gamma^{+} \psi$ can be evaluated between partonic states:

$$
\left\langle q_{1} q_{2}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left|q_{1} q_{2}\right\rangle
$$

- These matrix elements can be computed, leaving us with an overlap of LFWFs of the type:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left|\pi, P-\frac{\Delta}{2}\right\rangle \propto \int\left[\mathrm{d} x_{i} \mathrm{~d}^{2} k_{\perp, i}\right]\left[\mathrm{d} x_{i}^{\prime} \mathrm{d}^{2} k_{\perp, i}^{\prime}\right] \delta(\ldots)\left(\phi_{q_{1} q_{2}}^{\uparrow \downarrow}\right)^{*} \phi_{q_{1} q_{2}}^{\uparrow \downarrow}
$$

where $\delta(\ldots)$ guarantees the momentum conservation.
M. Diehl et al., Nucl.Phys. B596 (2001) 33-65

GPD partonic interpretation

- Two different partonic interpretations:

GPD partonic interpretation

- Two different partonic interpretations:

- This has a impact on the way the LFWFs overlap:

DGLAP: $|x|>|\xi|$

- Same N LFWFs
- No ambiguity

ERBL: $|x|<|\xi|$

- N and $N+2$ partons LFWFs
- Ambiguity

Forward limit

- In the forward limit $\Delta \rightarrow 0$
- we recover a symmetric behaviour in momentum space
- the incoming/outgoing LFWFs describe the same hadron

Forward limit

- In the forward limit $\Delta \rightarrow 0$
- we recover a symmetric behaviour in momentum space
- the incoming/outgoing LFWFs describe the same hadron
- Immediate consequence:

$$
\langle\pi, P| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)|\pi, P\rangle \sim \int\left[\mathrm{d} x_{i} \mathrm{~d}^{2} k_{\perp, i}\right]\left|\phi_{q_{1} q_{2}}^{\uparrow \downarrow}\left(x_{i}, k_{\perp, i}\right)\right|^{2}+\ldots
$$

The PDFs depend only on square modulus of LFWFs.

Forward limit

- In the forward limit $\Delta \rightarrow 0$
- we recover a symmetric behaviour in momentum space
- the incoming/outgoing LFWFs describe the same hadron
- Immediate consequence:

$$
\langle\pi, P| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)|\pi, P\rangle \sim \int\left[\mathrm{d} x_{i} \mathrm{~d}^{2} k_{\perp, i}\right]\left|\phi_{q_{1} q_{2}}^{\uparrow \downarrow}\left(x_{i}, k_{\perp, i}\right)\right|^{2}+\ldots
$$

The PDFs depend only on square modulus of LFWFs.

- Note that we recover formally a expression of a norm:

$$
\langle\pi, P| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)|\pi, P\rangle \sim \sum_{N}^{\infty}\left|\phi^{N}\right|^{2}
$$

The positivity property

- Beyond the forward limit, in the DGLAP region, the overlap of LFWFs keeps an interesting structure:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left|\pi, P-\frac{\Delta}{2}\right\rangle \sim \sum_{N}^{\infty}\left(\phi_{\text {out }}^{N}\right)^{*} \times \phi_{i n}^{N}
$$

- It ends up being a scalar product between two elements $\left\langle\Phi_{\text {out }} \mid \Phi_{\text {in }}\right\rangle$

The positivity property

- Beyond the forward limit, in the DGLAP region, the overlap of LFWFs keeps an interesting structure:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left|\pi, P-\frac{\Delta}{2}\right\rangle \sim \sum_{N}^{\infty}\left(\phi_{o u t}^{N}\right)^{*} \times \phi_{i n}^{N}
$$

- It ends up being a scalar product between two elements $\left\langle\Phi_{\text {out }} \mid \Phi_{i n}\right\rangle$
- The Cauchy-Schwartz inequality naturally yields:

$$
\left|\left\langle\Phi_{\text {out }} \mid \Phi_{\text {in }}\right\rangle\right| \leq\left\|\Phi_{\text {in }}\right\|\left\|\Phi_{\text {out }}\right\|
$$

The positivity property

- Beyond the forward limit, in the DGLAP region, the overlap of LFWFs keeps an interesting structure:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left|\pi, P-\frac{\Delta}{2}\right\rangle \sim \sum_{N}^{\infty}\left(\phi_{o u t}^{N}\right)^{*} \times \phi_{i n}^{N}
$$

- It ends up being a scalar product between two elements $\left\langle\Phi_{\text {out }} \mid \Phi_{i n}\right\rangle$
- The Cauchy-Schwartz inequality naturally yields:

$$
\begin{aligned}
\left|\left\langle\Phi_{\text {out }} \mid \Phi_{\text {in }}\right\rangle\right| & \leq\left\|\Phi_{\text {in }}\right\|\left\|\mid \Phi_{\text {out }}\right\| \\
\left|H(x, \xi, t)_{x \geq \xi \geq 0}\right| & \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right) q\left(\frac{x+\xi}{1+\xi}\right)}
\end{aligned}
$$

A. Radysuhkin, Phys. Rev. D59, 014030 (1999)
B. Pire et al., Eur. Phys. J. C8, 103 (1999)
M. Diehl et al., Nucl. Phys. B596, 33 (2001)
P.V. Pobilitsa, Phys. Rev. D65, 114015 (2002)

- Same type of inequality for gluon GPDs.

Polynomiality vs. Positivity

Polynomiality

- Properties of Mellin moments (local operators)
- Comes from Lorentz Covariance and discrete symmetries
- Delicate cancellations between DGLAP and ERBL region
- Equivalent to the existence of underlying Double Distributions

Positivity

- Bound on GPDs given in terms of PDFs
- Comes from the underlying structure of the Fock space (Hilbert space)
- Involves only the DGLAP region
- Naturally fulfilled within LFWFs formalism

Polynomiality vs. Positivity

Polynomiality

- Properties of Mellin moments (local operators)
- Comes from Lorentz Covariance and discrete symmetries
- Delicate cancellations between DGLAP and ERBL region
- Equivalent to the existence of underlying Double Distributions

Positivity

- Bound on GPDs given in terms of PDFs
- Comes from the underlying structure of the Fock space (Hilbert space)
- Involves only the DGLAP region
- Naturally fulfilled within LFWFs formalism

Is there a way to fulfil both?

Pragmatic solution: DD-based fit

- For fitting strategies in the DD space :
- Specific form better than others
P.V. Pobilitsa, Phys. Rev. D65, 114015 (2002)
- possibility to reject parameters combinations outside the positivity range

Pragmatic solution: DD-based fit

- For fitting strategies in the DD space :
- Specific form better than others
P.V. Pobilitsa, Phys. Rev. D65, 114015 (2002)
- possibility to reject parameters combinations outside the positivity range

[^1]
Pragmatic solution: DD-based fit

- For fitting strategies in the DD space :
- Specific form better than others
P.V. Pobilitsa, Phys. Rev. D65, 114015 (2002)
- possibility to reject parameters combinations outside the positivity range

"Try and test" way to fulfil positivity in DD space

- It has been tested on pseudo-data and it really helps constraining GPDs

Demonstration of results

slide from P. Sznajder et al.,
SPIN 2021

Conditions:

- Input: $200 \mathrm{x}=$ xi points
- Positivity forced
.... GK

_ single replica
ANN model
68\% CL
68%
Fu
Excluded
by positivity

Systematic Way: The covariant extension

- Question: Being given a GPD in the DGLAP region fulfilling positivity
- 1) can we complete it in the ERBL region such that polynomiality is fulfilled?
- 2) is this completion unique?

Systematic Way: The covariant extension

- Question: Being given a GPD in the DGLAP region fulfilling positivity
- 1) can we complete it in the ERBL region such that polynomiality is fulfilled?
- 2) is this completion unique?
- Alternative formulation: being given a GPD in the DGLAP region fulfilling positivity can we find a unique DD generating it ?

Systematic Way: The covariant extension

- Question: Being given a GPD in the DGLAP region fulfilling positivity
- 1) can we complete it in the ERBL region such that polynomiality is fulfilled?
- 2) is this completion unique?
- Alternative formulation: being given a GPD in the DGLAP region fulfilling positivity can we find a unique DD generating it ?

- two types of lines: DGLAP and ERBL lines
- All point of the support are crossed by infinitely many DGLAP lines
- But the line $\beta=0$!
- when getting close to $\beta=0$ the slope of DGLAP lines $\rightarrow \infty$

Numerical Solution

- Mathematical answer: yes! We can uniquely extract the DD but not the D-term.
N. Chouika et al., EPJC78, 478 (2018)

Numerical Solution

- Mathematical answer: yes! We can uniquely extract the DD but not the D-term.

$$
\text { N. Chouika et al., EPJC78, } 478 \text { (2018) }
$$

- In practice: numerical difficulties due to ill-posed character of the inverse Radon transform

Numerical Solution

- Mathematical answer: yes! We can uniquely extract the DD but not the D-term.

$$
\text { N. Chouika et al., EPJC78, } 478 \text { (2018) }
$$

- In practice: numerical difficulties due to ill-posed character of the inverse Radon transform

Numerical Solution

- Mathematical answer: yes! We can uniquely extract the DD but not the D-term.

$$
\text { N. Chouika et al., EPJC78, } 478 \text { (2018) }
$$

- In practice: numerical difficulties due to ill-posed character of the inverse Radon transform

Figures from J.M. Morgado Chavez et al., arXiv:2110.06052

Modelling GPD: a challenge

Summary so far

- GPDs are related to EFF and PDFs
- They have to obey multiples properties
- Modelling them so that they fulfil these properties is difficult

Next steps

- Scale evolution properties
- Connection to experimental processes

questions?

Evolution properties of GPDs

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)}_{\text {singular when } z \rightarrow 0}\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)}_{\text {singular when } z \rightarrow 0}\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Need to treat short-distance (=UV) singularities

Need to renormalise our non-local operator

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)}_{\text {singular when } z \rightarrow 0}\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Need to treat short-distance (=UV) singularities

Need to renormalise our non-local operator

- When $z \rightarrow 0$ working with renormalised quark fields $\psi_{R}=\left(Z_{2}\right)^{-1} \psi$ is not enough to treat the UV singularity

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)}_{\text {singular when } z \rightarrow 0}\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Need to treat short-distance (=UV) singularities

Need to renormalise our non-local operator

- When $z \rightarrow 0$ working with renormalised quark fields $\psi_{R}=\left(Z_{2}\right)^{-1} \psi$ is not enough to treat the UV singularity

Two approaches

- Renormalisation of local operators
- Renormalisation using "in partons" matrix elements

Operator Product Expansion

- The idea is to "Taylor expand" an operator:

$$
\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)=\sum_{N}^{\infty} c_{N}(z) 0^{N}(0)
$$

Operator Product Expansion

- The idea is to "Taylor expand" an operator:

$$
\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)=\sum_{N}^{\infty} c_{N}(z) 0^{N}(0)
$$

- Then the renormalisation of local operators can be performed perturbatively
\rightarrow a standard way is to include them effectively in the Lagrangian, introducing counter-terms

Operator Product Expansion

- The idea is to "Taylor expand" an operator:

$$
\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)=\sum_{N}^{\infty} c_{N}(z) \mathcal{O}^{N}(0)
$$

- Then the renormalisation of local operators can be performed perturbatively
\rightarrow a standard way is to include them effectively in the Lagrangian, introducing counter-terms
- It provides an order by order correction in perturbative theory, and a clear comprehension of the renormalisation procedure

Operator Product Expansion

- The idea is to "Taylor expand" an operator:

$$
\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)=\sum_{N}^{\infty} c_{N}(z) \mathcal{O}^{N}(0)
$$

- Then the renormalisation of local operators can be performed perturbatively
\rightarrow a standard way is to include them effectively in the Lagrangian, introducing counter-terms
- It provides an order by order correction in perturbative theory, and a clear comprehension of the renormalisation procedure
- But it requires to "resum" the renormalised local operators afterward: we saw already when talking about polynomiality that these operators are given by Mellin moment of GPDs \rightarrow solve the inverse moment problem

Operator Product Expansion

- The idea is to "Taylor expand" an operator:

$$
\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)=\sum_{N}^{\infty} c_{N}(z) \mathcal{O}^{N}(0)
$$

- Then the renormalisation of local operators can be performed perturbatively
\rightarrow a standard way is to include them effectively in the Lagrangian, introducing counter-terms
- It provides an order by order correction in perturbative theory, and a clear comprehension of the renormalisation procedure
- But it requires to "resum" the renormalised local operators afterward: we saw already when talking about polynomiality that these operators are given by Mellin moment of GPDs \rightarrow solve the inverse moment problem
- Caveat: operator mixing !

Partons in partons GPDs

- Instead of moments, one can consider partons-in-partons GPDs

Partons in partons GPDs

- Instead of moments, one can consider partons-in-partons GPDs

- Possible to look because the singularity is a property of the operator, not of the external states.

Partons in partons GPDs

- Instead of moments, one can consider partons-in-partons GPDs

- Possible to look because the singularity is a property of the operator, not of the external states.
- However, it is necessary to choose a scheme which is independent of the external states

Partons in partons GPDs

- Instead of moments, one can consider partons-in-partons GPDs

- Possible to look because the singularity is a property of the operator, not of the external states.
- However, it is necessary to choose a scheme which is independent of the external states

For that purpose, $\overline{\mathrm{MS}}$ is well suited GPDs (3D structure, pressure) become scheme dependent!

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity !

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity !
- We are left in the quark sector with:

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity !
- We are left in the quark sector with:

- Applying dimensional regularisation, and $\overline{M S}$ renormalisation.

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity!
- We are left in the quark sector with:

- Applying dimensional regularisation, and $\overline{M S}$ renormalisation.

Final result

$$
H^{i}(x, \xi, t, \mu)=\int_{-1}^{1} \frac{\mathrm{~d} y}{|y|} Z_{i, j}\left(\frac{x}{y}, \frac{\xi}{x}, \alpha_{s}(\mu), \epsilon\right) H_{r e g}^{j}(y, \xi, t, \epsilon)
$$

Renormalisation group

- The previous equation is nice, but interesting on a limited range in μ^{2}

Renormalisation group

- The previous equation is nice, but interesting on a limited range in μ^{2}
- On a wide range of μ we would expect deviations from α_{S} behaviour

Renormalisation group

- The previous equation is nice, but interesting on a limited range in μ^{2}
- On a wide range of μ we would expect deviations from α_{S} behaviour
- Take advantage of the Callan-Symanzik equations.

Renormalisation group

- The previous equation is nice, but interesting on a limited range in μ^{2}
- On a wide range of μ we would expect deviations from α_{S} behaviour
- Take advantage of the Callan-Symanzik equations.

Renormalisation Group

- Knowing the GPD at a scale μ we want to know how it behaves at $\mu+\mathrm{d} \mu$
- we describe perturbatively the impact of this $\mathrm{d} \mu$ leap

$$
H(x, \xi, t, \mu+\mathrm{d} \mu)-H(x, \xi, t, \mu)
$$

- we obtain like this a first-order integro-differential equation
- α_{S} becomes "exponentiated"

Evolution equations for GPDs

Non-Singlet Case

$$
\frac{\mathrm{d} H_{N S}^{q}(x, \xi, t, \mu)}{\mathrm{d} \ln (\mu)}=\frac{\alpha_{s}(\mu)}{4 \pi} \int_{0}^{1} \frac{\mathrm{~d} y}{y} \mathcal{P}_{q \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) H_{N S}^{q}(y, \xi, t, \mu)
$$

Singlet Case

$$
\binom{\frac{\mathrm{d} H_{S}^{q}(x, \xi, t, \mu)}{\mathrm{d}(\mathrm{n}(\mu)}}{\frac{\mathrm{d} H^{(}(x, t, \mu)}{\mathrm{d} \ln (\mu)}}=\frac{\alpha_{S}(\mu)}{4 \pi} \int_{0}^{1} \frac{\mathrm{~d} y}{y}\left(\begin{array}{ll}
\mathcal{P}_{q \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) & \mathcal{P}_{q \leftarrow g}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) \\
\mathcal{P}_{g \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) & \mathcal{P}_{g \leftarrow g}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right)
\end{array}\right)\binom{H_{S}^{q}(y, \xi, t, \mu)}{H^{g}(y, \xi, t, \mu)}
$$

Evolution equations for GPDs

Non-Singlet Case

$$
\frac{\mathrm{d} H_{N S}^{q}(x, \xi, t, \mu)}{\mathrm{d} \ln (\mu)}=\frac{\alpha_{s}(\mu)}{4 \pi} \int_{0}^{1} \frac{\mathrm{~d} y}{y} \mathcal{P}_{q \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) H_{N S}^{q}(y, \xi, t, \mu)
$$

Singlet Case

$$
\binom{\frac{\mathrm{d} H_{S}^{q}(x, \xi, t, \mu)}{\mathrm{d}(\mathrm{I}(\mu)}}{\frac{\mathrm{d} \mathcal{H}^{(}(, \xi, t, \mu)}{\mathrm{d} \ln (\mu)}}=\frac{\alpha_{s}(\mu)}{4 \pi} \int_{0}^{1} \frac{\mathrm{~d} y}{y}\left(\begin{array}{ll}
\mathcal{P}_{q \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) & \mathcal{P}_{q \leftarrow g}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) \\
\mathcal{P}_{g \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) & \mathcal{P}_{g \leftarrow g}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right)
\end{array}\right)\binom{H_{S}^{q}(y, \xi, t, \mu)}{H^{g}(y, \xi, t, \mu)}
$$

The \mathcal{P} distributions can in principle be computed in pQCD

DGLAP connection

- Splitting function have been computed at:
- LO $\left(\alpha_{s}\right)$
D. Mueller et al., Fortsch.Phys. 42 101-141, 1994
X. Ji PRD55, 7114-7125, 1997
A. Radyushkin, PRD56, 5524-5557, 1997
- NLO $\left(\alpha_{S}^{2}\right)$
- $\mathrm{N} 2 \mathrm{LO}\left(\alpha_{s}^{3}\right)$
A. Belitsky et al., Nucl.Phys. B574, 347-406, 2000 V.M. Braun et al., JHEP, vol. 02, p. 191, 2019
V.M. Braun et al.,JHEP 06, 037, 2017.

DGLAP connection

- Splitting function have been computed at:
- LO $\left(\alpha_{s}\right)$

> D. Mueller et al., Fortsch.Phys. 42 101-141, 1994
> X. Ji PRD55, 7114-7125, 1997
> A. Radyushkin, PRD56, 5524-5557, 1997

- NLO $\left(\alpha_{S}^{2}\right)$
A. Belitsky et al., Nucl.Phys. B574, 347-406, 2000
V.M. Braun et al., JHEP, vol. 02, p. 191, 2019
- $\mathrm{N} 2 \mathrm{LO}\left(\alpha_{s}^{3}\right)$
V.M. Braun et al.,JHEP 06, 037, 2017.
- In the limit $\Delta \rightarrow 0$, the $H^{q}(x, 0,0, \mu)=q(x, \mu)$
\rightarrow immediate consequence: one should recover the DGLAP evolution equations

DGLAP connection

- Splitting function have been computed at:
- LO $\left(\alpha_{s}\right)$

> D. Mueller et al., Fortsch.Phys. 42 101-141, 1994
> X. Ji PRD55, 7114-7125, 1997
> A. Radyushkin, PRD56, 5524-5557, 1997

- NLO (α_{S}^{2})
A. Belitsky et al., Nucl.Phys. B574, 347-406, 2000
V.M. Braun et al., JHEP, vol. 02, p. 191, 2019
- $\mathrm{N} 2 \mathrm{LO}\left(\alpha_{s}^{3}\right)$
V.M. Braun et al.,JHEP 06, 037, 2017.
- In the limit $\Delta \rightarrow 0$, the $H^{q}(x, 0,0, \mu)=q(x, \mu)$
\rightarrow immediate consequence: one should recover the DGLAP evolution equations

$$
\lim _{\xi \rightarrow 0} \mathcal{P}\left(\frac{x}{y}, \frac{\xi}{x}\right)=P_{D G L A P}\left(\frac{x}{y}\right)
$$

ERBL connection

- For $|x| \leq|\xi|$, a pair of quark-antiquark propagates along the lighcone in the t-channel sharing a fraction u of $q \bar{q}$ system momentum along the lightcone
- Situation very similar to distribution amplitudes for mesons

ERBL connection

- For $|x| \leq|\xi|$, a pair of quark-antiquark propagates along the lighcone in the t-channel sharing a fraction u of $q \bar{q}$ system momentum along the lightcone
- Situation very similar to distribution amplitudes for mesons
- For $|\xi|=1$, this interpretation holds for the entire x-range
- We recover there, the so-called ERBL evolution equations

$$
\lim _{\xi \rightarrow 1} \mathcal{P}\left(\frac{x}{y}, \frac{\xi}{x}\right)=P_{\mathrm{ERBL}}(x, y)
$$

Moments analysis I

- Why GPDs bridge the gap between two different distributions: PDF and Distribution Amplitudes for mesons?

Moments analysis I

- Why GPDs bridge the gap between two different distributions: PDF and Distribution Amplitudes for mesons?
- Because they are defined with the same operator!

$$
\begin{aligned}
\mathrm{PDF} & \rightarrow\langle\pi, P| \bar{\psi}\left(-\frac{z^{-}}{2}\right) \gamma^{+} \psi\left(\frac{z^{-}}{2}\right)|\pi, P\rangle \\
\mathrm{DA} & \rightarrow\langle 0| \bar{\psi}\left(-\frac{z^{-}}{2}\right) \gamma^{+} \psi\left(\frac{z^{-}}{2}\right)|\pi, P\rangle
\end{aligned}
$$

Moments analysis I

- Why GPDs bridge the gap between two different distributions: PDF and Distribution Amplitudes for mesons?
- Because they are defined with the same operator!

$$
\begin{aligned}
\mathrm{PDF} & \rightarrow\langle\pi, P| \bar{\psi}\left(-\frac{z^{-}}{2}\right) \gamma^{+} \psi\left(\frac{z^{-}}{2}\right)|\pi, P\rangle \\
\mathrm{DA} & \rightarrow\langle 0| \bar{\psi}\left(-\frac{z^{-}}{2}\right) \gamma^{+} \psi\left(\frac{z^{-}}{2}\right)|\pi, P\rangle
\end{aligned}
$$

- Same operator \rightarrow same OPE \rightarrow same renormalisation of local operators \rightarrow same anomalous dimensions:

$$
\gamma_{n}=2 C_{F}\left[-\frac{1}{2}+\frac{1}{(n+1)(n+2)}-2 \sum_{k=2}^{n+1} \frac{1}{k}\right]
$$

Moments analysis I

- Why GPDs bridge the gap between two different distributions: PDF and Distribution Amplitudes for mesons?
- Because they are defined with the same operator!

$$
\begin{aligned}
\mathrm{PDF} & \rightarrow\langle\pi, P| \bar{\psi}\left(-\frac{z^{-}}{2}\right) \gamma^{+} \psi\left(\frac{z^{-}}{2}\right)|\pi, P\rangle \\
\mathrm{DA} & \rightarrow\langle 0| \bar{\psi}\left(-\frac{z^{-}}{2}\right) \gamma^{+} \psi\left(\frac{z^{-}}{2}\right)|\pi, P\rangle
\end{aligned}
$$

- Same operator \rightarrow same OPE \rightarrow same renormalisation of local operators \rightarrow same anomalous dimensions:

$$
\gamma_{n}=2 C_{F}\left[-\frac{1}{2}+\frac{1}{(n+1)(n+2)}-2 \sum_{k=2}^{n+1} \frac{1}{k}\right]
$$

- Yet, evolution equations are written for matrix elements, not only operators.
\rightarrow therefore evolution equations are different!

Moments analysis II
Conformal Moments

- The ERBL kernal is diagonalised by the 3/2-Gegenbauer polynomials:

$$
\int \mathrm{d} u V_{N S}(v, u) C_{n}^{\frac{3}{2}}(2 u-1) \propto \gamma_{n} C_{n}(2 v-1)
$$

Moments analysis II

Conformal Moments

- The ERBL kernal is diagonalised by the 3/2-Gegenbauer polynomials:

$$
\int \mathrm{d} u V_{N S}(v, u) C_{n}^{\frac{3}{2}}(2 u-1) \propto \gamma_{n} C_{n}(2 v-1)
$$

- Remember, for GPD $u=\frac{1+\frac{x}{\xi}}{2} \rightarrow 2 u-1=\frac{x}{\xi}$
\rightarrow we expect the $C_{n}^{3 / 2}(x / \xi)$ to play an important role w.r.t. the evolution kernel

Moments analysis II

Conformal Moments

- The ERBL kernal is diagonalised by the 3/2-Gegenbauer polynomials:

$$
\int \mathrm{d} u V_{N S}(v, u) C_{n}^{\frac{3}{2}}(2 u-1) \propto \gamma_{n} C_{n}(2 v-1)
$$

- Remember, for GPD $u=\frac{1+\frac{x}{\xi}}{2} \rightarrow 2 u-1=\frac{x}{\xi}$
\rightarrow we expect the $C_{n}^{3 / 2}(x / \xi)$ to play an important role w.r.t. the evolution kernel
- However we need them to be finite in the forward limit \rightarrow rescaling $C_{n}^{3 / 2}(x / \xi) \rightarrow \xi^{n} C_{n}^{3 / 2}(x / \xi)$ so that $\lim _{\xi \rightarrow 0} \xi^{n} C_{n}^{3 / 2}(x / \xi)=x^{n}$

Moments analysis II

Conformal Moments

- The ERBL kernal is diagonalised by the 3/2-Gegenbauer polynomials:

$$
\int \mathrm{d} u V_{N S}(v, u) C_{n}^{\frac{3}{2}}(2 u-1) \propto \gamma_{n} C_{n}(2 v-1)
$$

- Remember, for GPD $u=\frac{1+\frac{x}{\xi}}{2} \rightarrow 2 u-1=\frac{x}{\xi}$
\rightarrow we expect the $C_{n}^{3 / 2}(x / \xi)$ to play an important role w.r.t. the evolution kernel
- However we need them to be finite in the forward limit \rightarrow rescaling $C_{n}^{3 / 2}(x / \xi) \rightarrow \xi^{n} C_{n}^{3 / 2}(x / \xi)$ so that $\lim _{\xi \rightarrow 0} \xi^{n} C_{n}^{3 / 2}(x / \xi)=x^{n}$
- In addition, in the DGLAP region, the Mellin moment do not mix:

$$
\frac{\mathrm{d}}{\mathrm{~d} \ln (\mu)}\left[\int \mathrm{d} x x^{n} q(x, \mu)\right]=\frac{\alpha_{s}(\mu)}{2 \pi} \gamma_{n} \int \mathrm{~d} x x^{n} q(x, \mu)
$$

Moments analysis II

Conformal Moments

- The ERBL kernal is diagonalised by the 3/2-Gegenbauer polynomials:

$$
\int \mathrm{d} u V_{N S}(v, u) C_{n}^{\frac{3}{2}}(2 u-1) \propto \gamma_{n} C_{n}(2 v-1)
$$

- Remember, for GPD $u=\frac{1+\frac{x}{\xi}}{2} \rightarrow 2 u-1=\frac{x}{\xi}$
\rightarrow we expect the $C_{n}^{3 / 2}(x / \xi)$ to play an important role w.r.t. the evolution kernel
- However we need them to be finite in the forward limit \rightarrow rescaling $C_{n}^{3 / 2}(x / \xi) \rightarrow \xi^{n} C_{n}^{3 / 2}(x / \xi)$ so that $\lim _{\xi \rightarrow 0} \xi^{n} C_{n}^{3 / 2}(x / \xi)=x^{n}$
- In addition, in the DGLAP region, the Mellin moment do not mix:

$$
\frac{\mathrm{d}}{\mathrm{~d} \ln (\mu)}\left[\int \mathrm{d} x x^{n} q(x, \mu)\right]=\frac{\alpha_{s}(\mu)}{2 \pi} \gamma_{n} \int \mathrm{~d} x x^{n} q(x, \mu)
$$

GPD Conformal moments $\int \xi^{n} C_{n}^{3 / 2}\left(\frac{x}{\xi}\right) H(x, \xi)$ do not mix under evolution !

Other properties

- Charge conservation: $\gamma_{0}=0$
- Energy-Momentum Conservation: $\int \mathrm{d} x x(q(x)+g(x))$ is independent of μ
- Continuity at the crossover lines $|x|=|\xi|$

Solving evolution equations

Evolution in conformal space

- Conformal moments do not mix \rightarrow easy evolution

$$
\xi^{n} \int_{-1}^{1} \mathrm{~d} x C_{n}^{3 / 2}\binom{x}{\bar{\xi}} H(x, \xi, \mu)=\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right)^{\frac{\gamma_{n}}{\beta_{0}}} \xi^{n} \int_{-1}^{1} \mathrm{~d} x C_{n}^{3 / 2}\binom{x}{\bar{\xi}} H\left(x, \xi, \mu_{0}\right)
$$

Solving evolution equations

Evolution in conformal space

- Conformal moments do not mix \rightarrow easy evolution

$$
\xi^{n} \int_{-1}^{1} \mathrm{~d} x C_{n}^{3 / 2}\left(\frac{x}{\xi}\right) H(x, \xi, \mu)=\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right)^{\frac{\gamma_{n}}{\beta_{0}}} \xi^{n} \int_{-1}^{1} \mathrm{~d} x C_{n}^{3 / 2}\left(\frac{x}{\xi}\right) H\left(x, \xi, \mu_{0}\right)
$$

- Inverse moment problem must be solved
\rightarrow requires analytic continuation in the complex plane
\rightarrow solution is not unique
D. Mueller and A. Schafer, Nucl.Phys.B739 1-59, 2006

Solving evolution equations

Evolution in conformal space

- Conformal moments do not mix \rightarrow easy evolution

$$
\xi^{n} \int_{-1}^{1} \mathrm{~d} x C_{n}^{3 / 2}\left(\frac{x}{\xi}\right) H(x, \xi, \mu)=\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right)^{\frac{\gamma_{n}}{\beta_{0}}} \xi^{n} \int_{-1}^{1} \mathrm{~d} x C_{n}^{3 / 2}\left(\frac{x}{\xi}\right) H\left(x, \xi, \mu_{0}\right)
$$

- Inverse moment problem must be solved
\rightarrow requires analytic continuation in the complex plane
\rightarrow solution is not unique
D. Mueller and A. Schafer, Nucl.Phys.B739 1-59, 2006

Evolution in x-space

- Numerical solution of integro-differential equations
- Dedicated routines do it
- Splitting functions not easily available above one loop

Questions ?

The Nucleon

Nucleon vs. Pion

Main difference: spin-1/2 \rightarrow more tensorial structures!

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u} \gamma^{+} u+E^{q}(x, \xi, t) \bar{u} \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u\right] . \\
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \gamma_{5} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[\tilde{H}^{q}(x, \xi, t) \bar{u} \gamma^{+} \gamma_{5} u+\tilde{E}^{q}(x, \xi, t) \bar{u} \frac{\gamma_{5} \Delta^{+}}{2 M} u\right] .
\end{aligned}
$$

Nucleon vs. Pion

Main difference: spin-1/2 \rightarrow more tensorial structures!

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, \mathrm{z}=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u} \gamma^{+} u+E^{q}(x, \xi, t) \bar{u} \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u\right] . \\
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \gamma_{5} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[\tilde{H}^{q}(x, \xi, t) \bar{u} \gamma^{+} \gamma_{5} u+\tilde{E}^{q}(x, \xi, t) \bar{u} \frac{\gamma_{5} \Delta^{+}}{2 M} u\right] .
\end{aligned}
$$

The nucleon has 4 chiral-even and 4 chiral-odd quark GPDs.
All previous properties apply, except the soft pion theorem.

Probing GPDs through exclusive processes

Experimental connection to GPDs

> Observables (cross sections, asymmetries ...)

Experimental connection to GPDs

Experimental connection to GPDs

Experimental connection to GPDs

- CFFs play today a central role in our understanding of GPDs
- Extraction generally focused on CFFs

Deep Virtual Compton Scattering

- Best studied experimental process connected to GPDs \rightarrow Data taken at Hermes, Compass, JLab 6, JLab 12

Deep Virtual Compton Scattering

- Best studied experimental process connected to GPDs
\rightarrow Data taken at Hermes, Compass, JLab 6, JLab 12
- Interferes with the Bethe-Heitler (BH) process
- Blessing: Interference term boosted w.r.t. pure DVCS one
- Curse: access to the angular modulation of the pure DVCS part difficult
M. Defurne et al., Nature Commun. 8 (2017) 1, 1408

QCD corrections to DVCS

- At LO, the DVCS coefficient function is a QED one

QCD corrections to DVCS

- At LO, the DVCS coefficient function is a QED one
- At NLO, gluon GPDs play a significant role in DVCS

H. Moutarde et al., PRD 87 (2013) 5, 054029

QCD corrections to DVCS

- At LO, the DVCS coefficient function is a QED one
- At NLO, gluon GPDs play a significant role in DVCS

H. Moutarde et al., PRD 87 (2013) 5, 054029
- Recent N2LO studies, impact needs to be assessed
V. Braun et al., JHEP 09 (2020) 117

Recent CFF extractions

M. Cuic̀ et al., PRL 125, (2020), 232005

H. Moutarde et al., EPJC 79, (2019), 614

- Recent effort on bias reduction in CFF extraction (ANN)
additional ongoing studies, J. Grigsby et al., PRD 104 (2021) 016001
- Studies of ANN architecture to fulfil GPDs properties (dispersion relation, polynomiality, . .)
- Recent efforts on propagation of uncertainties (allowing impact studies for JLAB12, EIC and EicC)

Finite t corrections

Kinematical corrections in t / Q^{2} and M^{2} / Q^{2}
V. Braun et al., PRL 109 (2012), 242001

M. Defurne et al. PRC 92 (2015) 55202

- Sizeable even for $t / Q^{2} \sim 0.1$
- Not currently included in global fits.

Dispersion relation and the D-term

- At all orders in α_{S}, dispersion relations relate the real and imaginary parts of the CFF.
I. Anikin and O. Teryaev, PRD 76056007
M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932

Dispersion relation and the D-term

- At all orders in α_{S}, dispersion relations relate the real and imaginary parts of the CFF.
I. Anikin and O. Teryaev, PRD 76056007 M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
- For instance at LO:

$$
\operatorname{Re}(\mathcal{H}(\xi, t))=\frac{1}{\pi} \int_{-1}^{1} \mathrm{~d} x \operatorname{Im}(\mathcal{H}(x, t))\left[\frac{1}{\xi-x}-\frac{1}{\xi+x}\right]+\underbrace{2 \int_{-1}^{1} \mathrm{~d} \alpha \frac{D(\alpha, t)}{1-\alpha}}_{\text {Independent of } \xi}
$$

Dispersion relation and the D-term

- At all orders in α_{S}, dispersion relations relate the real and imaginary parts of the CFF.
I. Anikin and O. Teryaev, PRD 76056007
M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
- For instance at LO:

- $D(\alpha, t)$ is related to the EMT (pressure and shear forces)
M.V. Polyakov PLB 555, 57-62 (2003)

Dispersion relation and the D-term

- At all orders in α_{S}, dispersion relations relate the real and imaginary parts of the CFF.
I. Anikin and O. Teryaev, PRD 76056007
M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
- For instance at LO:

- $D(\alpha, t)$ is related to the EMT (pressure and shear forces)
M.V. Polyakov PLB 555, 57-62 (2003)

figure from H. Dutrieux et al., Eur.Phys.J.C 81 (2021) 4

The DVCS deconvolution problem I
From CFF to GPDs

The DVCS deconvolution problem I

 From CFF to GPDs

- It has been known for a long time that this is not the case at LO Due to dispersion relations, any GPD vanishing on $x= \pm \xi$ would not contribute to DVCS at LO (neglecting D-term contributions).

The DVCS deconvolution problem I

From CFF to GPDs

- It has been known for a long time that this is not the case at LO

Due to dispersion relations, any GPD vanishing on $x= \pm \xi$ would not contribute to DVCS at LO (neglecting D-term contributions).

- Are QCD corrections improving the situation?

The DVCS deconvolution problem II

- NLO analysis of shadow GPDs:
- Cancelling the line $x=\xi$ is necessary but no longer sufficient
- Additional conditions brought by NLO corrections reduce the size of the "shadow space"...
- ... but do not reduce it to 0
\rightarrow NLO shadow GPDs
H. Dutrieux et al., PRD 103114019 (2021)

The DVCS deconvolution problem II

- NLO analysis of shadow GPDs:
- Cancelling the line $x=\xi$ is necessary but no longer sufficient
- Additional conditions brought by NLO corrections reduce the size of the "shadow space"...
- ... but do not reduce it to 0 \rightarrow NLO shadow GPDs
H. Dutrieux et al., PRD 103114019 (2021)
- Evolution
- it was argued that evolution would solve this issue
A. Freund PLB 472, 412 (2000)
- but in practice it is not the case H. Dutrieux et al., PRD 103114019 (2021)

The DVCS deconvolution problem II

Sullivan processes

- Tested at JLab 6 Huber et al.,PRC78, 045203
- Planned for JLab 12

Aguilar et al., EPJA 55 10, 190

- Envisioned at EIC and EicC see EIC Yellow Report and EicC white paper

- Not done at JLab 6
- Planned for JLab 12

Aguilar et al., EPJA 55 10, 190

- Envisioned at EIC and EicC see EIC Yellow Report and EicC white paper

DVCS on virtual Pion Target

- Question already raised in 2008 for JLab 12.

Amrath et al., EPJC 58, 179-192

- Would such processes be measurable at the future EIC and EicC? Answering the question of measurability of DVCS requires:
- A pion GPD model
- An evolution code
- A phenomenological code able to compute amplitudes from GPDs
- An event generator simulating how many events could be detected

Timelike Compton Scattering

- Amplitude related to the DVCS one $\left(Q^{2} \rightarrow-Q^{2}, \ldots\right)$ \rightarrow theoretical development for DVCS can be extended to TCS
E. Berger et al., EPJC 23 (2002) 675
- Excellent test of GPD universality but not the best option to solve the deconvolution problem

Timelike Compton Scattering

- Amplitude related to the DVCS one $\left(Q^{2} \rightarrow-Q^{2}, \ldots\right)$
\rightarrow theoretical development for DVCS can be extended to TCS
E. Berger et al., EPJC 23 (2002) 675
- Excellent test of GPD universality but not the best option to solve the deconvolution problem
- Interferes with the Bethe-Heitler (BH) process

Timelike Compton Scattering

- Amplitude related to the DVCS one $\left(Q^{2} \rightarrow-Q^{2}, \ldots\right)$
\rightarrow theoretical development for DVCS can be extended to TCS

$$
\text { E. Berger et al., EPJC } 23 \text { (2002) } 675
$$

- Excellent test of GPD universality but not the best option to solve the deconvolution problem
- Interferes with the Bethe-Heitler (BH) process
- Same type of final states as exclusive quarkonium production

TCS: Recent results

O. Grocholski et al., EPJC 80, (2020) 61

- DVCS Data-driven prediction for TCS at LO and NLO
- First experimental measurement at JLab through forward-backward asymmetry (interference term)
P. Chatagnon et al.,arXiv:2108.11746
- Measurable at the LHC in UPC ?

Deep Virtual Meson Production

- Factorization proven for γ_{L}^{*}
J. Collins et al., PRD 56 (1997) 2982-3006
- Same GPDs than previously
- Depends on the meson DA
- Formalism available at NLO
D. Müller et al., Nucl.Phys.B 884 (2014) 438-546

Deep Virtual Meson Production

- Factorization proven for γ_{L}^{*}
J. Collins et al., PRD 56 (1997) 2982-3006
- Same GPDs than previously
- Depends on the meson DA
- Formalism available at NLO
D. Müller et al., Nucl.Phys.B 884 (2014) 438-546
- Mesons can act as filters:
- Select singlet (V_{L}), non-singlet (pseudo-scalar mesons) contributions or chiral-odd distributions (V_{T})
- Help flavour separation
- Leading-order access to gluon GPDs

Deep Virtual Meson Production

- Factorization proven for γ_{L}^{*}
J. Collins et al., PRD 56 (1997) 2982-3006
- Same GPDs than previously
- Depends on the meson DA
- Formalism available at NLO
D. Müller et al., Nucl.Phys.B 884 (2014) 438-546
- Mesons can act as filters:
- Select singlet (V_{L}), non-singlet (pseudo-scalar mesons) contributions or chiral-odd distributions (V_{T})
- Help flavour separation
- Leading-order access to gluon GPDs
- Factorisation proven \neq factorisation visible at achievable Q^{2}
- Leading-twist dominance at a given Q^{2} is process-dependent \rightarrow for DVMP it can change between mesons.
- At JLab kinematics, higher-twist contributions are very strong \rightarrow hide factorisation of σ_{L}

Status of DVMP

- π^{0} electroproduction
- $\sigma_{T}>\sigma_{L}$ at JLab 6 and likely at JLab 12 kinematics $\left(Q^{2}=8.3 \mathrm{GeV}^{2}\right)$
M. Dlamini et al., arXiv:2011.11125
- No extraction of σ_{L} at JLab 12 yet
- Model-dependent treatment of σ_{T} using higher-twist contributions
S. V. Goloskokov and P. Kroll, EPJC 65, 137 (2010) G. Goldstein et al., PRD 91 (2015) 11, 114013

Status of DVMP

- π^{0} electroproduction
- $\sigma_{T}>\sigma_{L}$ at JLab 6 and likely at JLab 12 kinematics $\left(Q^{2}=8.3 \mathrm{GeV}^{2}\right)$
M. Dlamini et al., arXiv:2011.11125
- No extraction of σ_{L} at JLab 12 yet
- Model-dependent treatment of σ_{T} using higher-twist contributions
S. V. Goloskokov and P. Kroll, EPJC 65, 137 (2010) G. Goldstein et al., PRD 91 (2015) 11, 114013
- ρ^{0} electroproduction
- $\sigma_{T}=\sigma_{L}$ for $Q^{2} \simeq 1.5 \mathrm{GeV}^{2}$ and $\frac{\sigma_{L}}{\sigma T}$ increases with Q^{2} see e.g. L. Favart, EPJA 52 (2016) 6, 158
- $\sigma_{T} \neq 0$ though $\rho_{0 ; T}$ production vanishes at leading twist \rightarrow No LT access to chiral-odd GPDs.
M. Diehl et al., PRD 59 (1999) 034023
- Sizeable higher-twist effects need to be understood
I. Anikin et al., PRD 84 (2011) 054004

Status of DVMP

- π^{0} electroproduction
- $\sigma_{T}>\sigma_{L}$ at JLab 6 and likely at JLab 12 kinematics $\left(Q^{2}=8.3 \mathrm{GeV}^{2}\right)$
M. Dlamini et al., arXiv:2011.11125
- No extraction of σ_{L} at JLab 12 yet
- Model-dependent treatment of σ_{T} using higher-twist contributions
S. V. Goloskokov and P. Kroll, EPJC 65, 137 (2010) G. Goldstein et al., PRD 91 (2015) 11, 114013
- ρ^{0} electroproduction
- $\sigma_{T}=\sigma_{L}$ for $Q^{2} \simeq 1.5 \mathrm{GeV}^{2}$ and $\frac{\sigma_{L}}{\sigma_{T}}$ increases with Q^{2}

```
see e.g. L. Favart, EPJA 52 (2016) 6, 158
```

- $\sigma_{T} \neq 0$ though $\rho_{0 ; T}$ production vanishes at leading twist \rightarrow No LT access to chiral-odd GPDs.
M. Diehl et al., PRD 59 (1999) 034023
- Sizeable higher-twist effects need to be understood
I. Anikin et al., PRD 84 (2011) 054004

DVMP is as interesting as challenging Additional data would be more than welcome

PARTONS and Gepard

PARTONS

 partons.cea.fr

Gepard
calculon.phy.hr/gpd/server/index.html

K. Kumericki, EPJ Web Conf. 112 (2016) 01012

- Similarities: NLO computations, BM formalism, ANN,...
- Differences : models, evolution,...

Physics impact

These integrated softwares are the mandatory path toward reliable multichannel analyses.

Conclusion

Summary

- Introduction to GPDs and their place in hadron structure studies
- Focus on two important properties: polynomiality and positivity
- Evolution of GPD
- Connection to experimental processes

Conclusion

- GPD field is as complicated as interesting
- Many theoretical and phenomenological works remain required
- Forthcoming facilities will likely shed new light on them
- Progresses in ab-initio computations (continuum and lattice) expected to be significant in the forthcoming years

Thank you for your attention! Some final questions ?

[^0]: C. Mezrag et al.,PRD 88 (2013) 1, 014001

[^1]: "Try and test" way to fulfil positivity in DD space

