

Physics Basis for Electron Storage Ring Vacuum System Design

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

Important processes in particle loss

- ₭ Gas scattering, scattering with the other particles in the beam, quantum lifetime, tune resonances, &collisions
- Radiation damping plays a major role for electron/positron rings
 - →For ions, lifetime is usually much longer
 - Perturbations progressively build-up & generate losses
- * Most applications require storing the beam as long as possible

==> limiting the effects of the residual gas scattering ==> ultra high vacuum technology

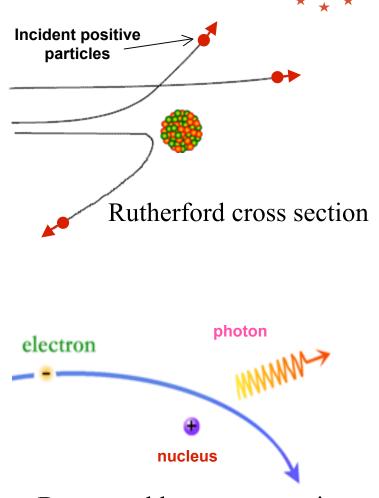
What do we mean by lifetime?

* Number of particles lost at time t is proportional to the number of particles present in the beam at time t

$$dN = -\alpha N(t) dt$$
 with $\alpha = constant$

***** Define the lifetime $\tau = 1/\alpha$; then

hen
$$N = N_0 e^{-i/t}$$


 t/π

- * Lifetime is the time to reduce the number of beam particles to 1/e of the initial value
- * Calculate the lifetime due to the individual effects (gas, Touschek, ...)

$$\frac{1}{\tau_{total}} = \frac{1}{\tau_1} + \frac{1}{\tau_2} + \frac{1}{\tau_3} + \dots$$

Beam loss by scattering

- # Elastic (Coulomb scattering) from residual background gas
 - → Scattered beam particle undergoes transverse (betatron) oscillations.
 - → If the oscillation amplitude exceeds ring acceptance the particle is lost
- # Inelastic scattering causes particles to *lose energy*
 - → Bremsstrahlung or atomic excitation
 - → If energy loss exceeds the momentum acceptance the particle is lost

Bremsstrahlung cross section

Elastic scattering loss process

$$\phi_{beam \ particles} = \frac{N}{A_{beam}T_{rev}} = \frac{N}{A_{beam}}\frac{\beta c}{L_{ring}}$$

$$N_{molecules} = nA_{beam}L_{ring}$$

$$\sigma^*_R = \int_{Lost} \frac{d\sigma_{Rutherford}}{d\Omega} d\Omega = \int_0^{2\pi} d\varphi \int_{\theta_{MAX}}^{\pi} \frac{d\sigma_{Rutherford}}{d\Omega} \sin\theta d\theta$$

$$\frac{d\sigma_R}{d\Omega} = \frac{1}{\left(4\pi\varepsilon_0\right)^2} \left(\frac{Z_{beam}Z_{gas}e^2}{2\beta c p}\right)^2 \frac{1}{\sin^4(\theta/2)} \quad [MKS]$$

US PARTICLE ACCELERATOR SCHOOL

Gas scattering lifetime

==>

$$\frac{dN}{dt}\Big|_{Gas} = -\frac{\pi n N\beta c}{(4\pi \varepsilon_0)^2} \left(\frac{Z_{Inc} Ze^2}{\beta c p}\right)^2 \frac{1}{\tan^2(\theta_{MAX}/2)}$$

Loss rate for gas elastic scattering [MKS]

* For M-atomic molecules of gas
$$n = M n_0 \frac{P_{[Torr]}}{760}$$

* For a ring with acceptance ε_A & for small θ

$$\left\langle \theta_{MAX} \right\rangle = \sqrt{\frac{\varepsilon_A}{\left\langle \beta_n \right\rangle}}$$

$$\tau_{Gas} \approx \frac{760}{P_{[Torr]}} \frac{4\pi\varepsilon_0^2}{\beta \, c \, M \, n_0} \left(\frac{\beta \, c \, p}{Z_{Inc} Z e^2}\right)^2 \frac{\varepsilon_A}{\langle \beta_T \rangle} \quad [MKS]$$

US PARTICLE ACCELERATOR SCHOOL

Inelastic scattering lifetimes

Beam-gas bremsstrahlung: if E_A is the energy acceptance

$$\tau_{Brem[hours]} \simeq -\frac{153.14}{\ln(\Delta E_A/E_0)} \frac{1}{P_{[nTorr]}}$$

Inelastic excitation: For an average β_n

$$\tau_{Gas[hours]} \approx 10.25 \frac{E_{0[GeV]}^{2}}{P_{[nTorr]}} \frac{\varepsilon_{A[\mu m]}}{\langle \beta_{n} \rangle_{[m]}}$$

Touschek effect: Intra-beam Coulomb scattering

- * Coulomb scattering between beam particles can transfer transverse momentum to the longitudinal plane
 - → If the $p_{||}+\Delta p_{||}$ of the scattered particles is outside the momentum acceptance, the particles are lost
 - → First observation by Touschek at ADA e^+e^- ring
- * Computation is best done in the beam frame where the relative motion of the particles is non-relativistic
 - \rightarrow Then boost the result to the lab frame

$$\frac{1}{\tau_{Tousch.}} \propto \frac{1}{\gamma^3} \frac{N_{beam}}{\sigma_x \sigma_y \sigma_s} \frac{1}{\left(\Delta p_A / p_0\right)^2} \propto \frac{1}{\gamma^3} \frac{N_{beam}}{A_{beam} \sigma_s} \frac{1}{\hat{V}_{RF}}$$

Why must high luminosity colliders operate at very low pressures ?

- 1) Background gas causes beam loss via
 - → Elastic scattering
 - → Inelastic scattering (bremsstrahlung)
 - \rightarrow Ion trapping
- # Beam lifetime:

$$\frac{1}{\tau_{g}} = \frac{1}{N_{b}} \frac{d N_{b}}{dt} = 3.22 \text{ x } 10^{22} \text{ } n_{z} \text{ P}_{\text{Torr}} \beta c (\sigma_{el} + \sigma_{Br})$$

where n_z is the number of molecules of species z.

** At high energy bremsstrahlung dominates. We expect $\tau_g \approx 3 \text{ hr} @ 10 \text{ nTorr}$

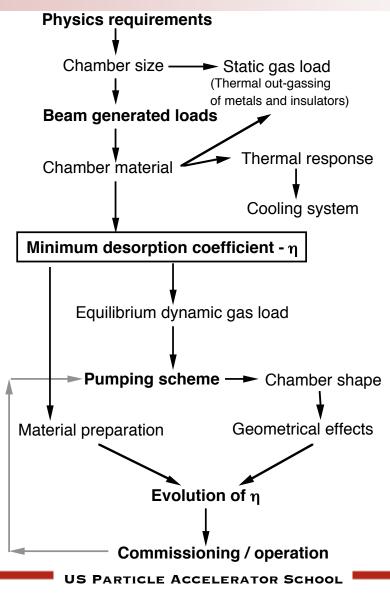
... & near the collision point

- 2) Hard photons & scattered electrons striking apertures generate backgrounds in the detector (depends on masking and lattice)
- # Background μ Pressure in interaction region
- ⋇ Sources of gas:
 - \rightarrow Thermal out-gassing,
 - → Photo-desorption
 - → Leaks)

Generic issues of vacuum system design

- * Thermal loads: 1 5 kW/m \rightarrow 5 40 kW/m
 - \rightarrow Cooling, thermal fatigue, 7 technical risk issues
- * Photon flux: 5×10^{17} photons/s/m $\longrightarrow \approx 10^{19}$
 - \rightarrow Chamber materials & preparation for low design η
 - → Commissioning time
- Choice of materials: Stainless steel → cladded Al & Cu
 Fabrication & cost issues
- ★ Chamber shape: elliptical ==> Complex (antechambers)
 → affects fabrication complexity, costs, magnet designs
- ※ Pumping speeds: 100 300 L/s/m → up to 3000 L/s/m
 → impacts choice of pumps, chamber design
- # High current increases consequences of fault modes

Low risk designs are based on proven technologies & sound engineering practices


*

Vacuum System Components

- ₭ Beam chamber
 - → Provide sufficient beam aperture
 - → Provide good vacuum environment
 - \rightarrow Shield magnets, electronics from synchrotron radiation (SR)
- ℁ Pumping system
 - → Maintain operating vacuum
 - 1 10 nTorr in arcs
 - 1 3 nTorr in straight sections
 - ≈ 0.2 nTorr near IR
 - → Provide for rapid commissioning
- ✤ Cooling system
 - \rightarrow Waste heat removal at high synchrotron radiation flux
 - → Ensure mechanical stability of chamber
- Special components
 - → Ports, Bellows, Transitions, Diagnostics
 - → Consistent with low impedance

US PARTICLE ACCELERATOR SCHOOL

Iterative design of vacuum system

Thermal load from radiation

* Distributed over the dipole arcs the average thermal load is

$$P_L = 1.26 \text{ kW/m} E^2_{\text{GeV}} I_A B^2_{\text{T}}$$

℁ In terms of collider parameters this yields

$$P_{L} = 19.5 \frac{kW}{m} \left(\frac{L}{10^{34}}\right) \left(\frac{\beta_{y}^{*}}{1 \text{ cm}}\right) \left(\frac{0.03}{\xi}\right) \left(\frac{B_{D}}{1 \text{ T}}\right)^{2} \frac{E_{GeV}}{1+r}$$

- ==> 5 kW/m (PEP-II) 40 kW/m @ 3 x 10³³ cm⁻² s⁻¹ in B factory designs (9 GeV, 3 A)
- Small beam height raises issue of thermal fatigue, influences choice of alloy; even 10 kW/m --> residual plastic strain
- * Cycles to fatigue failure is a strong function of residual strain

Design approach for PEP-II: 1) Keep material in elastic regime; 2) Keep high load regions always in compression ==> Minimized technical risk in engineering realization US PARTICLE ACCELERATOR SCHOOL

Choosing material of vacuum chambers

	Al	Cu	SS
Photo-desorption	+	++	++
Self-shielding	-	++	++
Thermal conductivity	+	+ to ++	_
Strength	+	- to +	++
Ease of fabrication	++	+	++
Experience	++	+	++
Cost	\$	\$\$	\$\$

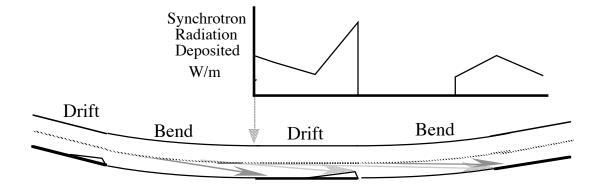
✤ Choice for PEP-II is Class 1 OFE Cu:

- → superior vacuum properties
- \rightarrow superior thermal properties eases thermal management
- → superior self-shielding eliminates Pb cladding

Thermal loads in e⁺ & e⁻ rings

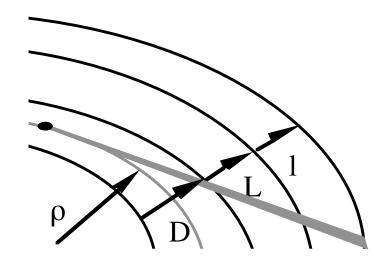
* Each beam generates a synchrotron radiation power, P_{sr} , $P_{sr} = 88.5$ Watts $E^4_{GeV} I_{mA} / \rho_m$, (1)

or in terms of the B-field in Tesla,


 $P_{sr} = 26.5 \ kW \ E^3{}_{GeV} \ I_A \ B_T$

* Were the radiation is deposited over $2\pi\rho$, the linear power density deposited by each beam on the walls, P_L, would be

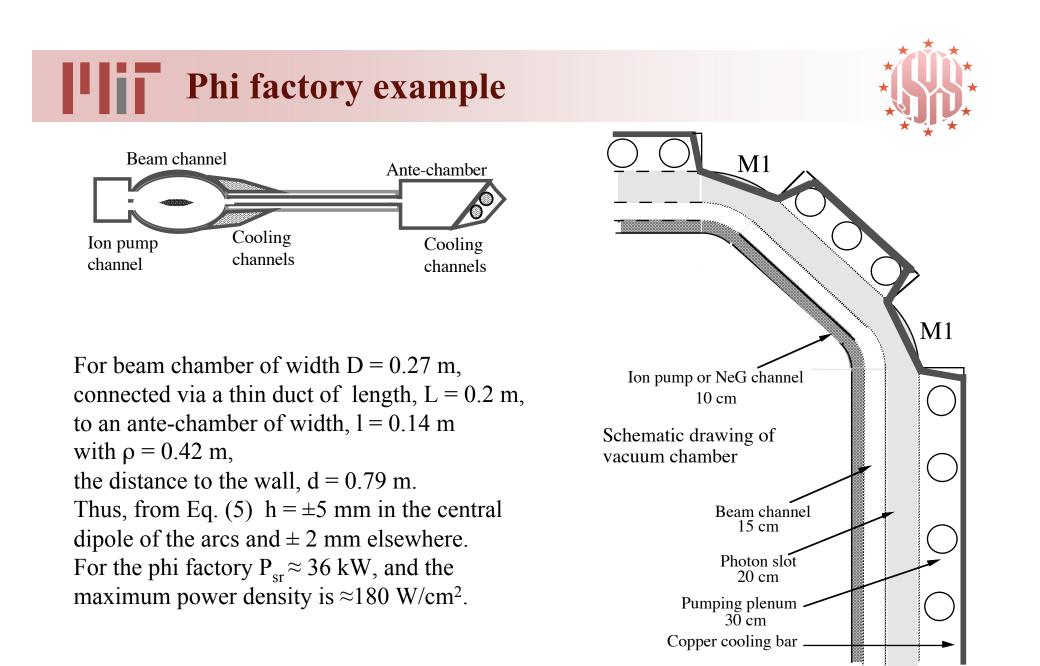
$$P_{L} = 1.26 \text{ kW/m} E^{2}_{GeV} I_{A} B^{2}_{T}$$


But, the power is not deposited uniformly along the vacuum chamber

Examples of non-uniform power deposition

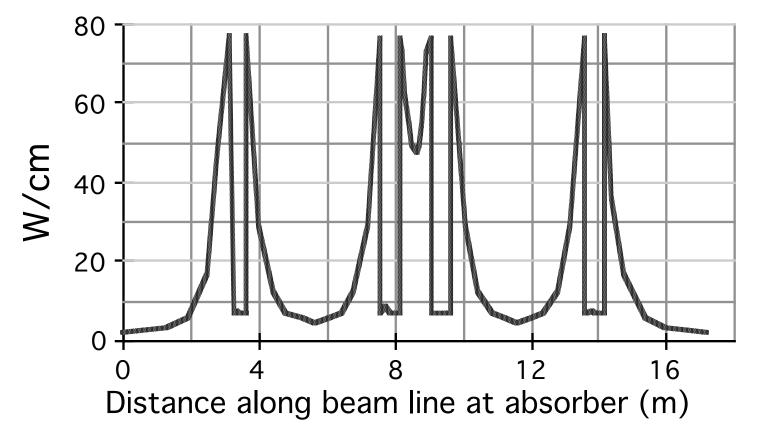
- * Another example, for a phi factory, E = 0.51, $B_T = 4$ T, & I = 1.2 A.
 - → The average thermal load per beam is \approx 6 kW/m.
 - → Both beams circulate in the same ring ==> radiation fans overlap at the center of the bends ==>
 - → local thermal load of ≈12 kW/m for an conventional elliptical vacuum chamber.

Areal power density

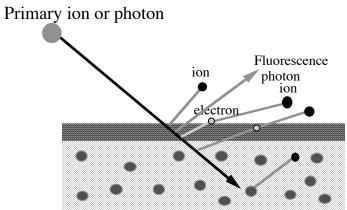


- * Power density on the walls depends on the height, h, of the radiation fan at the wall
- * h is a function of radiation angle from the beam & on distance, d, from the beam orbit to the wall

$$\theta \approx \frac{\mathrm{m}\,\mathrm{c}^2}{\mathrm{E}} = \gamma^{-1} \tag{4}$$


* The vertical spread of the fan is

$$h = \pm \left[\sigma_{y}^{2} + d^{2} \left(\left(\frac{\varepsilon}{\sigma} \right)_{y}^{2} + \theta^{2} \right) \right]^{1/2}.$$
 (5)



Actual distribution along the beamline

Photodesorption produces large dynamic gas load

Scaling of desorption (for photons):

- Weak energy dependence $< \sqrt{E}$
- Angular dependance $< 1/(\sin \phi)$
- Strong variation with surface treatment
- Strong variation with surface exposure
- Strong variation with desorbed species

For beam scattering limits use CO equivalents

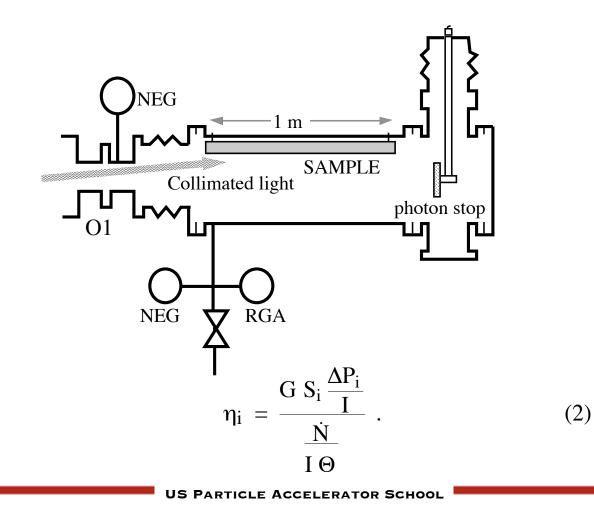
For pump regeneration times use molecular load

PEP-II design is based on experiments conducted as part of our R&D program

US PARTICLE ACCELERATOR SCHOOL

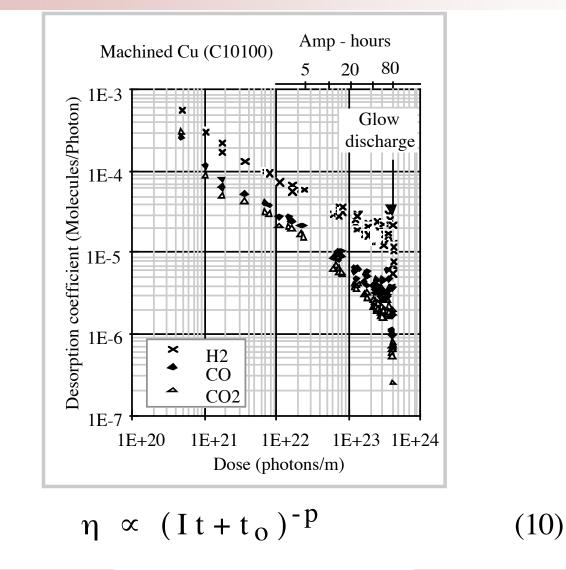
Conservative design accounts for nonuniformity of radiation distribution

- # The critical parameter, η_F , is a non-linear function of
 - 1) photon dose (>10-to-1 variation in LER)
 - 2) material
 - 3) fabrication and preparation
 - 4) incidence angle of photons
 - 5) photon energy

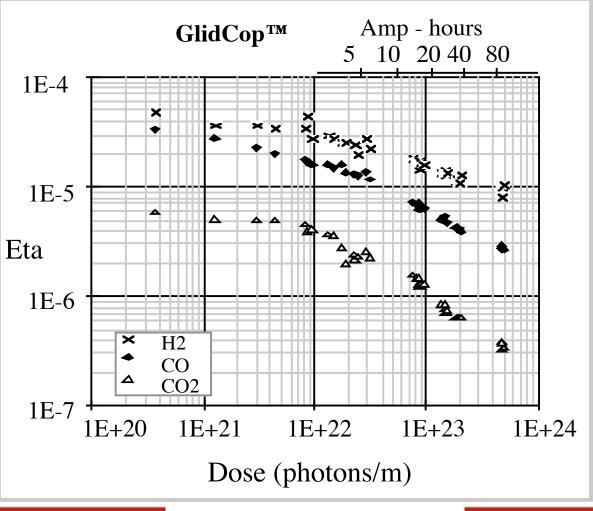

= > Regard η as an average engineering parameter

- * Accurate modeling of gas load & ring commissioning accounts for the variation in dose to the chamber due to
 - 1) bend v. straight chamber geometry
 - 2) illumination by primary v. secondary photons

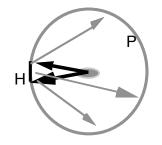
We measured η for many materials

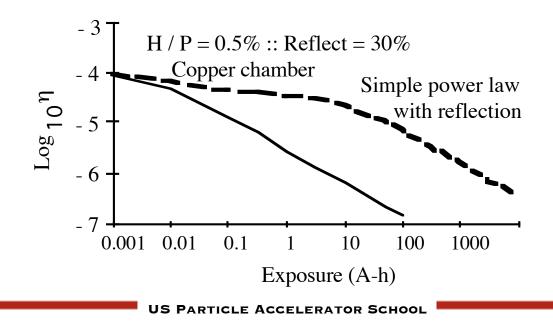


Sample chamber: stainless steel, baked 2 days @ 200 C In-situ Ar glow discharge after 3 I 10²³ photons / m

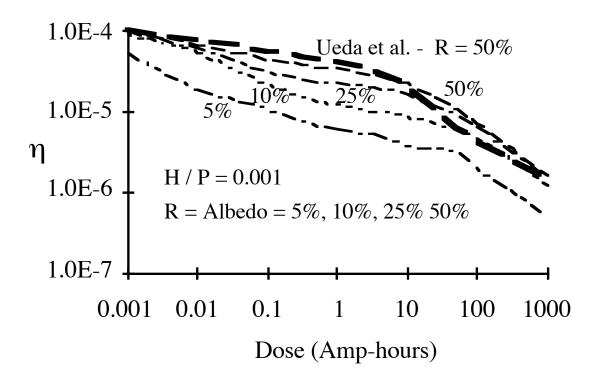


We measured η for many materials


Desorption for dispersion strengthened Cu

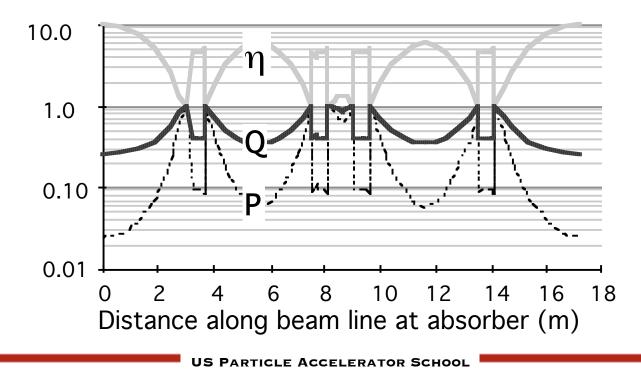

US PARTICLE ACCELERATOR SCHOOL

Effective desorption probability



 $\eta \propto (It + t_0)^{-p} + R (It \frac{RH}{P} + t_0)^{-p}$ (12)

η depends on chamber albedo



Modeling η for a chamber

- * Actual rate is governed by the scattered photons that clean the majority of the surface
- ₭ Gas load is leveled —> Much more pumping is required
- * Commissioning times are extended

Translation from SR power to gas load

* At a temperature of 300 K, this number of molecules corresponds to a total dynamic gas load of

Q (gas) =
$$\dot{N}$$
 (gas) = 2.4x10⁻² E_{GeV} I_{mA} $\eta_F \frac{Torr - 1}{s}$

- * Assume ring is maintained at pressure P
 - → neglect loss of effective pumping speed due to finite conductance ==> supply total pumping

$$S = \frac{P}{Q}$$

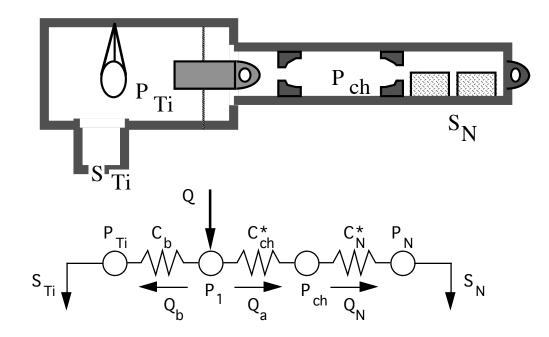
Gas loads set pumping requirements

Q (gas) =
$$\dot{N}$$
 (gas) = 2.4x10⁻² E_{GeV} I_{mA} $\eta_F \frac{\text{Torr - l}}{s}$

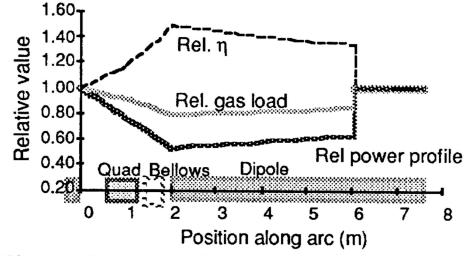
℁ In terms of collider parameters the pumping requirement is

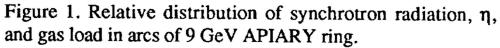
$$S = 1.2 \times 10^5 \frac{L}{s} \left(\frac{L}{10^{34}}\right) \left(\frac{\beta_y^*}{1 \text{ cm}}\right) \left(\frac{0.03}{\xi}\right) \left(\frac{10 \text{ nTorr}}{P}\right) \left(\frac{\langle \eta_F \rangle}{2 \text{ x } 10^{-6}}\right)$$

Options


- - \rightarrow The larger the ring, the lower the technical risk & conversely
 - → Complication: Radiation directed at pumps can lead to ion problems (HERA experience) in wigglers or wiggler lattices
 - No direct illumination
- # For 200 < S < 700 L/s/m NEGs may be attractive.
 - → Excellent for high speed *especially* if gas load is small
 - → Complication is frequent regeneration due to large gas loads

For very high pumping speeds


S > 1000 L/s/m generally requires Titanium sublimation pumps & complex shapes


→ Cost-effective means to produce high speeds

Example from early B-factory design

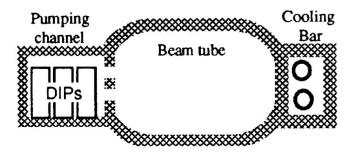
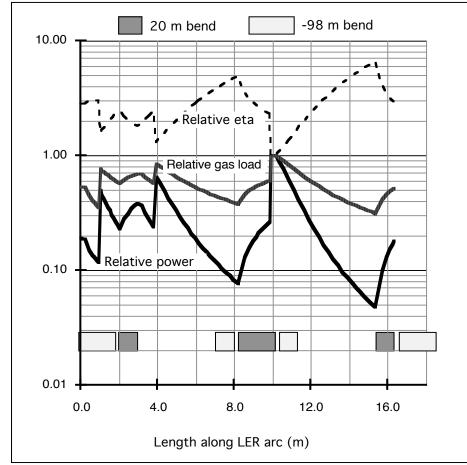
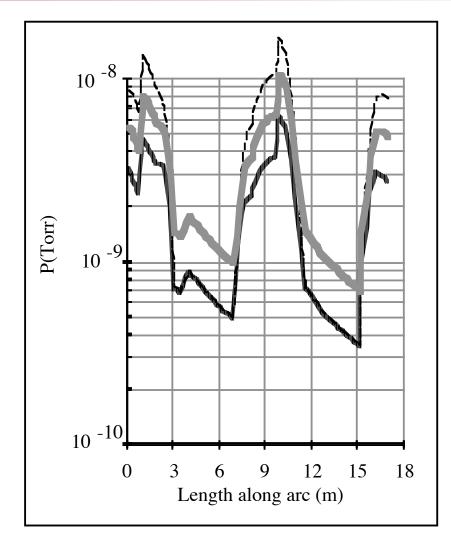



Figure 2. Cross section of the HER arc vacuum chamber.

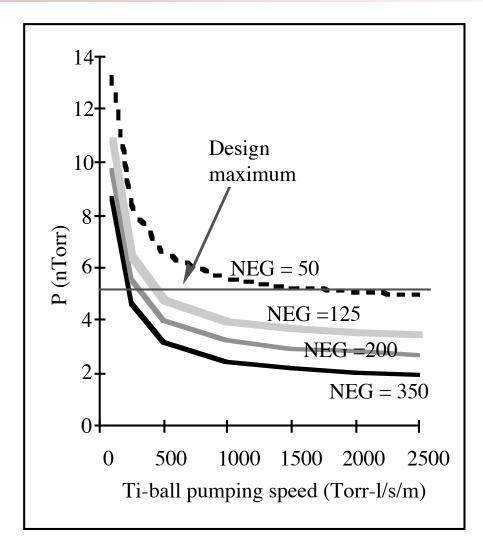
US PARTICLE ACCELERATOR SCHOOL

Relative desorption characteristics in tunnel arcs of the CESR-B LER



Relative value = 1.0 corresponds to $\eta = 1.7 \times 10^{-6}$, Q = 2.3 x 10⁻⁶ Torr-l/s/m and P = 10.4 kW/m

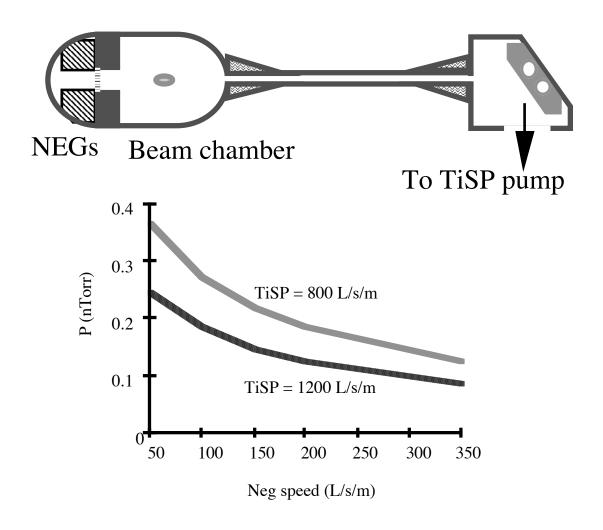
US PARTICLE ACCELERATOR SCHOOL


Translating to gas loads

Now adding pumping

UCLA Phi Factory design

Radiation characteristics


Critical energy (keV)	0.69
Linear power density (W/cm)	76.79
Photons/sec	9.9E+20
Specific photon flux (A-1 m-1 s-1)	1.5E+20
Photon flux at I max (s-1 m-1)	3.7E+20
Dose equivalent (photons m-1 / A-h)	5.5E+23
Gamma cone angle (mrad)	1.0E+00
Photoelectron current (A m-1) at I max	1.53
gamma1	998.0

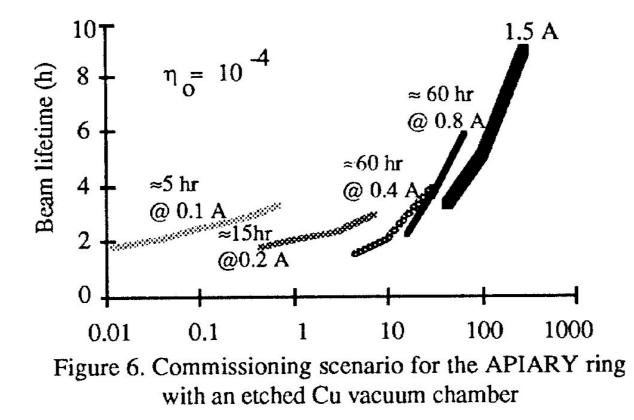
Summary Vacuum charcteristics

Design eta	2.0E-06
Desired base pressure (nTorr)	5
Desorbed molecules - steady	2.0E+15
Gas load (Torr-I/s)	6.0E-05
Distributed load (Torr-l/s/m	1.4E-05
Required pumping (l/s)	1.2E+04
Linear pumping in arc (l/s/m)	2.71E+03

To get to 0.1 nTorr vacuum

US PARTICLE ACCELERATOR SCHOOL

NEG cannot be abused


✤ NEGs & TSPs have a finite capacity,

→ they must periodically be heated to high temperature to allow the chemsorbed gases to migrate to the interior of the material

	Virgin(l/s/m)	5 exp. (l/s/m)	10 exp (l/s/m)
1 row	680	340	270
2 rows	1360	680	540

Pumping characteristics of WP950 NEGs for CO (Halama et al)

Implication for commissioning PEP-II: Lifetime v. Amp-hours

