Follow up and current status of the FLUKA+ANSYS studies to a CLIC energy spoiler made out of beryllium

J.L. Fdez-Hernando – ASTeC/Cockcroft Institute (Daresbury Lab.)

13/08/2010

Flat part of 0.05Xo of Beryllium

Max equivalent stress achieved of ~325MPa is compressive and above the Yield Compressive Strength, therefore, it will suffer permanent deformation.

The maximum strain would be of 0.1%

$T_{melt}[K]$	1560	
$Y [10^5 MPa]$	2.87	
$\alpha_{\rm T} [10^{-6} \rm K^{-1}]$	11.3	
σ _{UTS} [MPa]	370	
$\Delta T_{fr}[K]$	228]
Yield Tensile Strength [MPa]	240	
Yield Compressive Strength [MPa]	270]
Specific Heat Capacity [J/g°C]	1.925	
Density [g/cm ³]	1.844	

We showed at IPAC that for a flat part of 0.01Xo we are just under Yield Compressive Strength

Outlook:

I'm performing more calculations which follow up the shockwave after the 156ns when the beam energy is deposited, to assess whether or not there would be a stress build up from the rebounding shockwaves and how the stresses and temperatures would evolve.

Conclusions:

Both with a flat top of 0.01Xo and a flat top of 0.05Xo the top stress reached was not sufficient to fracture the material, but

For a flat top of 0.05Xo there will be permanent deformation of ~0.1% (in the red area).

How the spoiler is supported is critical. Any rigid points would not absorb the shockwave and the stress could reach fracture levels. Therefore, some sort of support/suspension should be designed, to safely absorb the shockwave in case of accident.