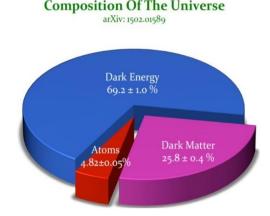
# Hints of BSM physics at CMS

Sabino Meola

On behalf of the CMS collaboration

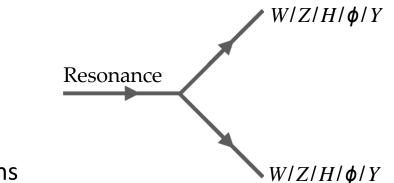



### New Physics Searches at CMS

LHC provides excellent opportunities to search for BSM physics and CMS has a wide range of new physics searches

SUSY, leptoquarks, heavy leptons, axions, new dynamics/couplings

Many of BSM scenarios considered explain unresolved mysteries in SM

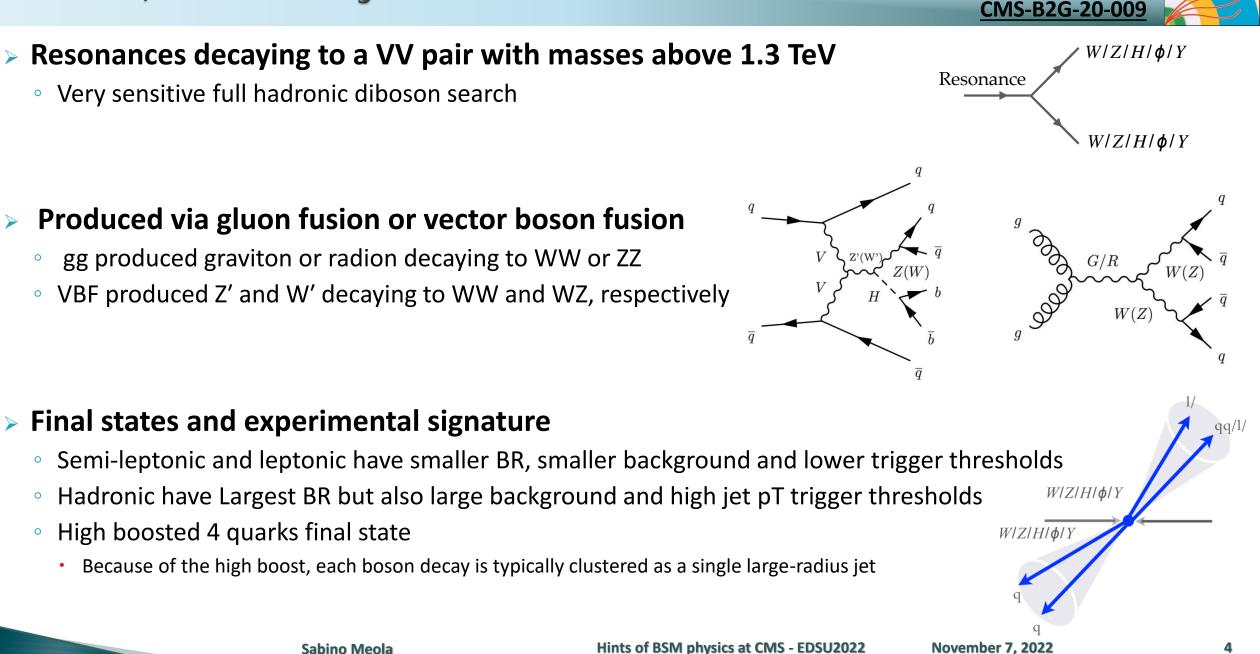

- Hierarchy problem, dark matter, neutrino, mass, muon g-2, B anomalies, W mass
- Some of these BSM models produce mass resonance
- Some of them produce long-lived particles



### This talk will focus only on a handful of recent results, with a critical eye on fluctuations present so far





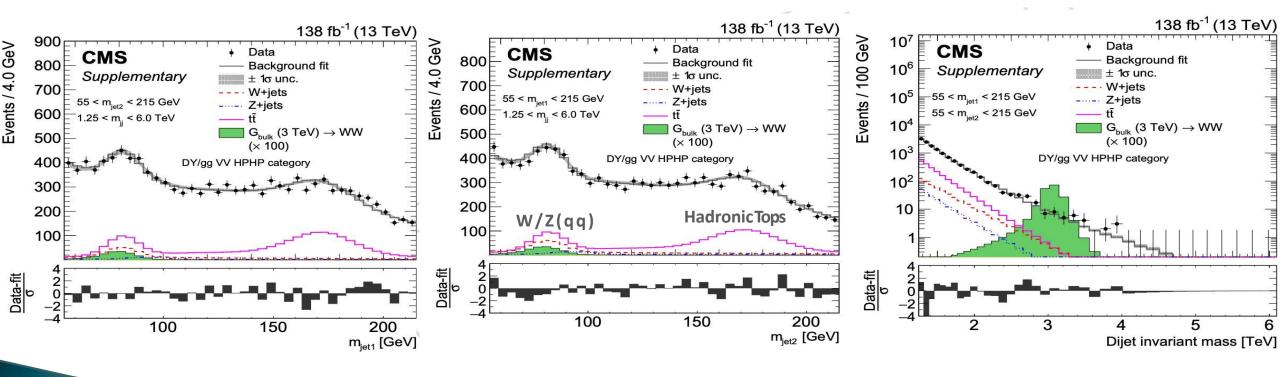



### Cover a wide range of models

- > Light scalars( $\phi$ /Y) and Radion
  - Extended Higgs sectors, 2HDM and Warped Extra dimensions
- > Heavy Vector Triplet Models (HVT) and extensions of Minimal Warped ED
  - W'/Z'
  - WKK
- > Warped extra dimensions
  - Bulk-Graviton

### $X \rightarrow VV/VH \rightarrow all-jets$

 $\succ$ 



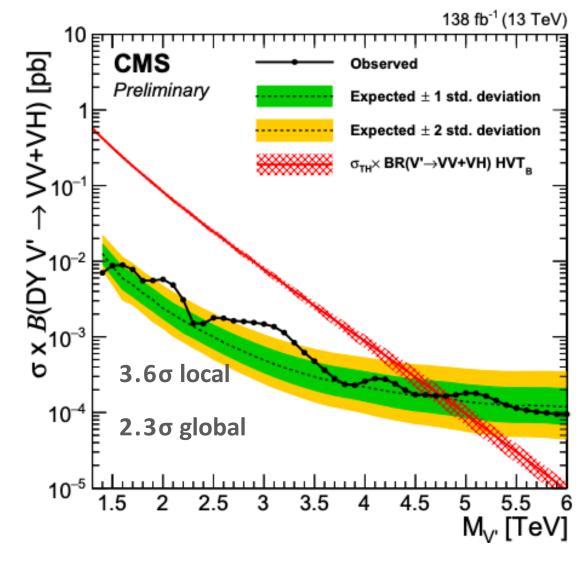

 $X \rightarrow VV/VH \rightarrow all-jets$ 

➤ Jet tagging algorithms based categorization → Improve sensitivity

#### > 3D-Fit: MJET 1 + MJET 2 + MJJ

- Fitting also each of the jets masses
- QCD model adapts to data, uses MC-based gaussian kernel templates with increased statistics
- Probing up to 4.8 TeV




Sabino Meola

**CMS-B2G-20-009** 



Results for V'  $\rightarrow$  VV+VH, Heavy Vector Triplets model

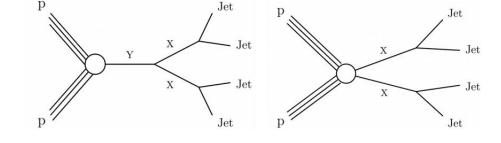
- Most stringent limits on V' up to 4.8 TeV
- First VBF limits (no exclusion) on all-hadronic search
- $^\circ~$  2.3  $\sigma$  global (3.6  $\sigma$  local) excess

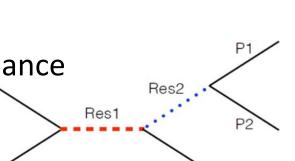


### Searches in final states with jets

Many searches in CMS with jets in final states, recent Full Run 2 results:

> High-mass resonances decaying to a jet and a Lorentz- boosted resonance


Search for resonant and nonresonant production of pairs of dijet resonances


Leptoquarks (LQs) decaying to tau and b



Hints of BSM physics at CMS - EDSU2022







P3



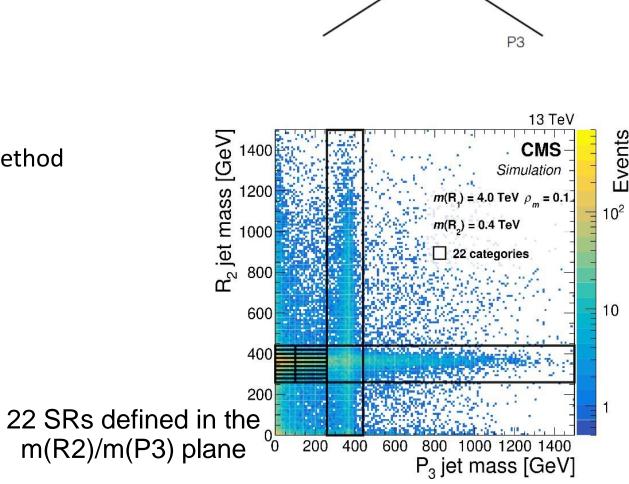
### Di-tri-jets Search

#### **Experimental Signature**

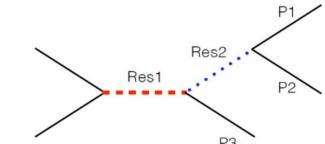
Two large-radius (wide) resolved jets, one coming from R2 (R2-jet) and one coming from the third parton (P3-jet)

#### Main backgrounds

MultiJet QCD production estimated with a data-driven method


### **Signal Models**

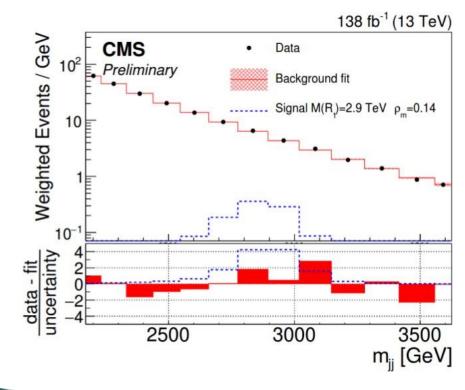
Warped extra dimensions where R1 is a KK gluon (GKK),

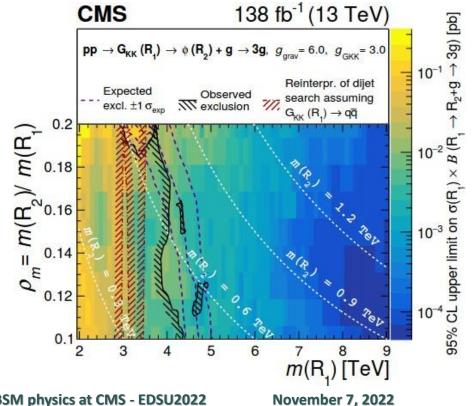

R2 is a radion ( $\phi$ )

→ GKK  $\rightarrow$   $\varphi$ g  $\rightarrow$  ggg (trijet)

Search largely model independent.





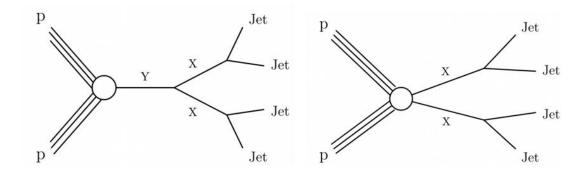

### Di-tri-jets Search

Maximum likelihood fit in the dijet mass performed in the SRs.

- Novel experimental signature, experimental exclusion of this benchmark model of new physic significantly extended
- 1.8  $\sigma$  global (3.2  $\sigma$  local) excess






### Paired Dijet Search

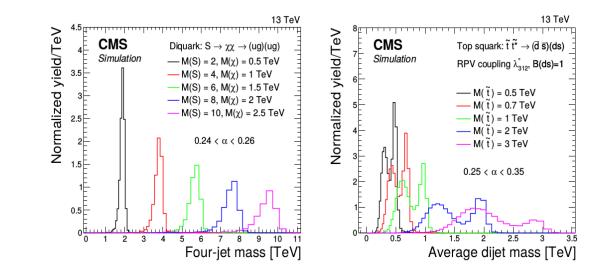


#### Dijet resonances produced in two modes

• Resonant

Diquark decaying to vector-like quarks which decay to an up quark and gluon  $uu \rightarrow S \rightarrow \chi \chi \rightarrow (ug)(ug)$ 




#### • Non-resonant

<u>R-parity</u> violating stop pairs decaying to a d and s quark

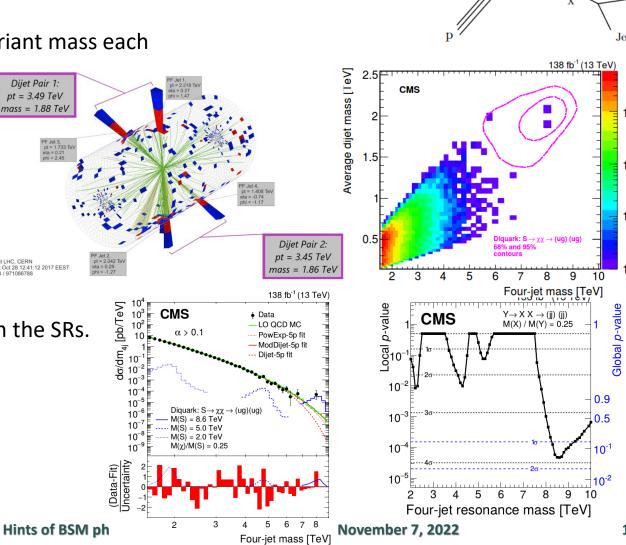
 $pp \to \widetilde{t} \widetilde{t}^* \to (\overline{d} \, \overline{s})(ds)$ 

#### **Experimental Signature**

• Four or two resolved jets paired to same mass resonances.



#### Sabino Meola


## Paired Dijet Search – Resonant



- The invariant mass of all four jets was 8 TeV
- Jets could be divided into two pairs with a 1.9 TeV invariant mass each

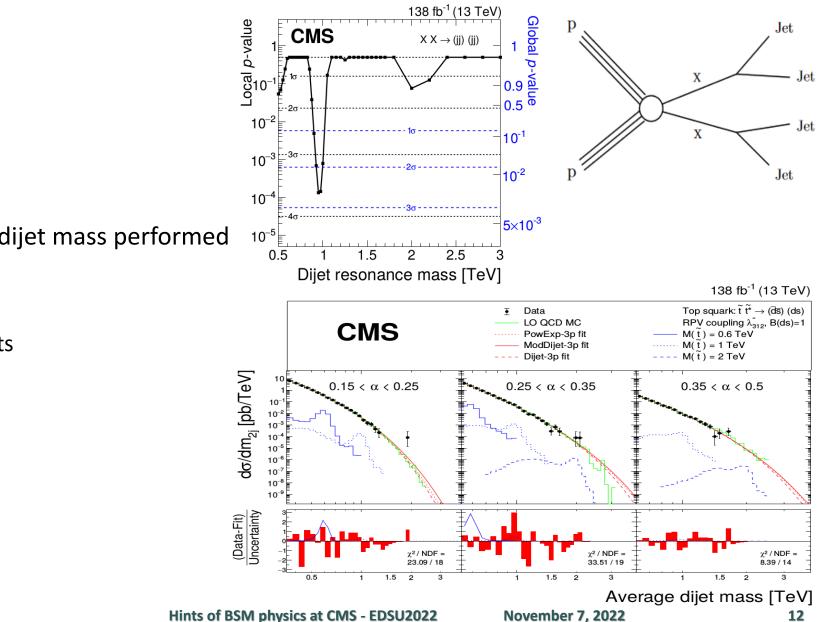


- Maximum likelihood fit in the four jet mass performed in the SRs.
- $^\circ$  1.6  $\sigma$  global (3.9  $\sigma$  local) excess





Events/bir


10<sup>2</sup>

10

11

**CMS-EXO-21-010** 

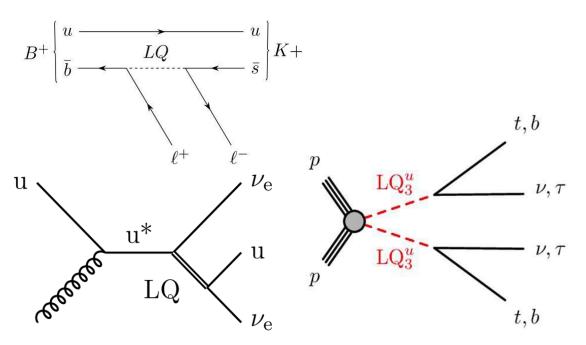
### Paired Dijet Search – Nonresonant



**CMS-EXO-21-010** 

Maximum likelihood fit in the average dijet mass performed in the SRs

- Significantly extend the previous limits 0
- 2.5  $\sigma$  global (3.6  $\sigma$  local) excess 0


Sabino Meola

Hints of BSM physics at CMS - EDSU2022

### Leptoquarks (LQs)

- > LQs can couple to both leptons and quarks
  - Both scalar and vector bosons are possible
  - Carry fractional electric charge

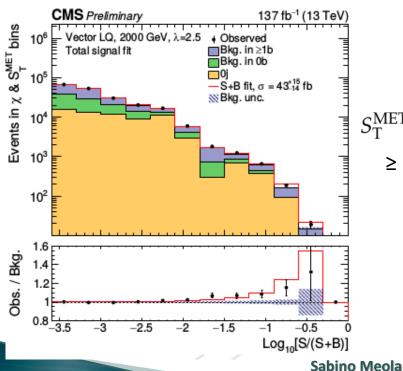
- Processes can violate lepton flavor universality
- Strongly couple to 3<sup>rd</sup> generation SM fermions
- Possible explanation for B anomalies
  - $^{\circ}$  B → Dτν and B → D<sup>\*</sup>τν decay rates by the BaBar, Belle and LHCb collectively deviate from the SM predictions by about 4 σ

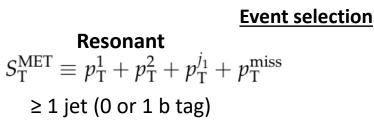




### Search for LQs $\rightarrow \tau b$



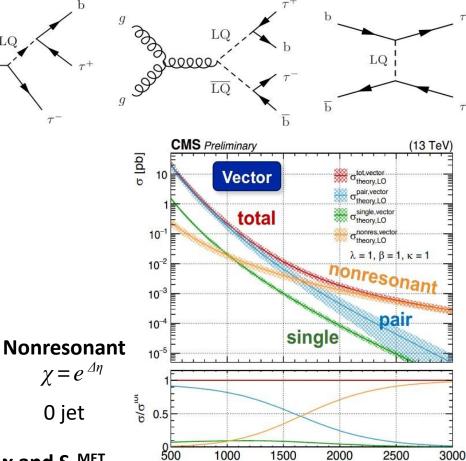

Search for a third-generation leptoquark (LQ) coupling to a  $\tau$  lepton and a b quark


Resonant production as single LQ or in pair

two high-pT τ leptons, and one or two high-pT b quarks

Nonresonat production with two  $\tau$  in final states

τ lepton pair decay can be fully hadronic (τh τh), semileptonic (eth, μth), and two fully leptonic channels (eµ, μμ)






Simultaneous maximum likelihood fit of  $\chi$  and  $S_T^{\text{MET}}$ 

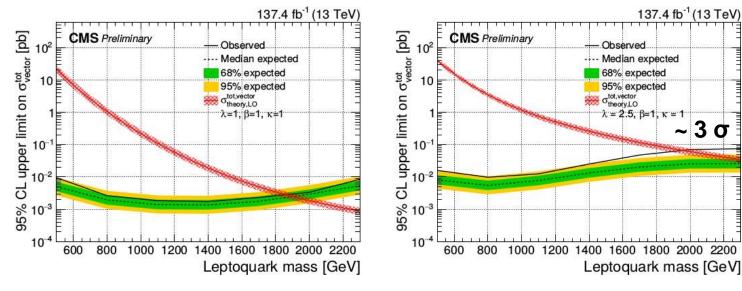
q

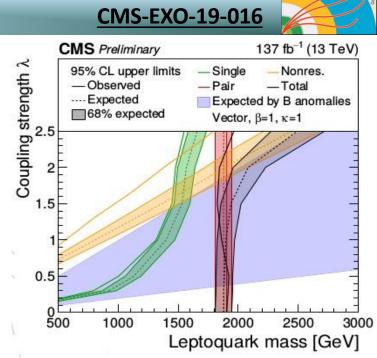
Soone Barrow



**CMS-EXO-19-016** 

Leptoquark mass [GeV]


### Search for LQs $\rightarrow \tau b$


All three production modes treated as one signal

- Maximal sensitivity and exclusion power
- Upper limits placed on scalar and vector LQ

### For a Vector LQ, ~ 3 $\sigma$ excess for LQ mass > 1.8 TeV

• Driven by nonresonant mode





#### Sabino Meola

#### Hints of BSM physics at CMS - EDSU2022

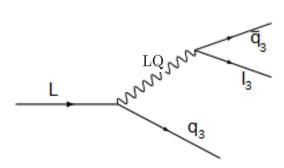
### Vector Like Leptons (VLL)

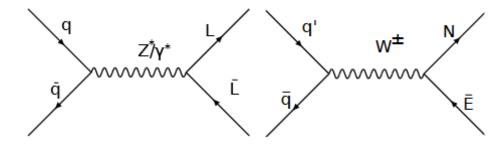
### The model consists of a SM extension with an SU(4) × SU(3)' × SU(2)L × U(1)' gauge sector

- Motivations from B-Physics Anomalies 0
- Points to lepton flavor nonuniversality 0

### EW production and their couplings to the SM W and Z bosons, or through interactions with a new Z'

#### Decays proceed through their interactions with the vector leptoquark LQ


L represents either the neutral, N, or the charged, E VLL


Sabino Meola

Final state with two quarks and one lepton 0



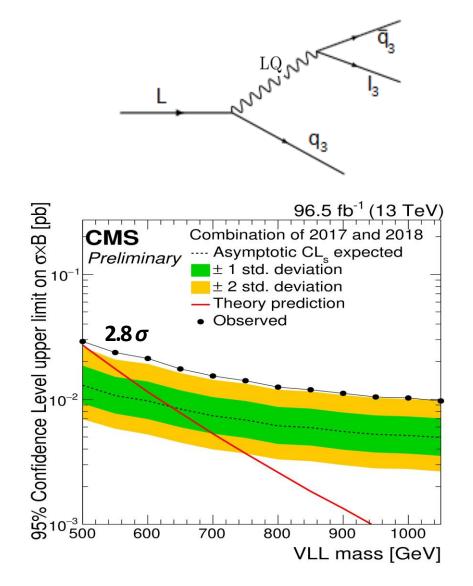
16







### Pair-produced VLL in $\geq 3b + N\tau$ final states


#### **Pair-Produced VLL**

- $\circ \quad L \to tt^-(\tau/\nu\tau)$
- $t \rightarrow bW, W \rightarrow qq$

### Categorization based on $N\tau$

- Nτ=0, QCD dominated
- N $\tau$ =1, QCD and t
- N $\tau$ =2, t dominated

### Mild excess ~ 2.8 $\sigma$ around a VLL mass of 600 $\,$ GeV







### > CMS performed many searches beyond Standard Model

No clear evidence for BSM yet

### > Run-3 just started in July

• More data, improvements in data collection and analysis techniques

## CMS is entering into a new era that will shed light on BSM physics Stay tuned for Run 3!



Backup



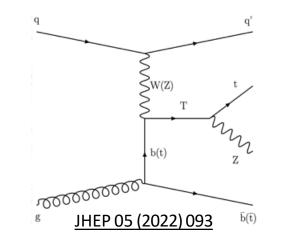
## Thank you



### Vector Like Quarks (VLQ)

## CCKS of the second seco

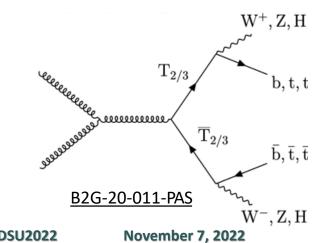
### Many extensions of SM have VLQs


- Can be singlets, doublets, triplets, ...
- Mass from mixing, not Higgs (Yukawa)
- Mechanism to stabilize Higgs mass

### **Single-Production**

• EW, In association w/ t/b + quark

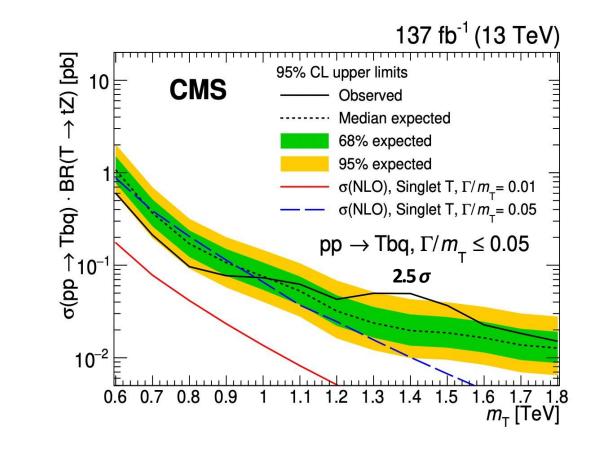
### **Motivation from experiments**


- Higgs properties align with SM
  - VLQs compatible w/ constraints
- Possible explanation for BSM phenomena



#### **Pair-Production**

 Strong, 4 massive (boosted) bosons and 3rd generation quarks


Sabino Meola



JHEP 05 (2022) 093

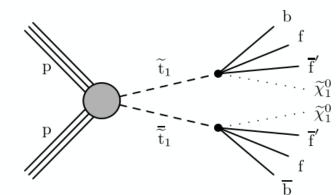
### $Z \rightarrow v$ (invisible): Missing pT

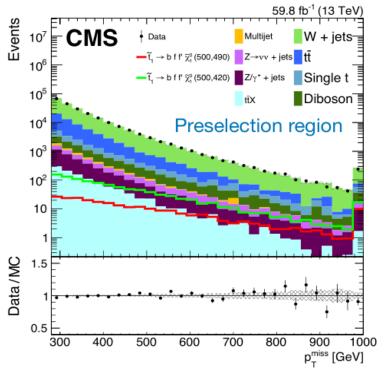
• Top Reconstruction: b+W



#### Search for top squarks decaying via the four-body mode in single-lepton final states SUS-21-003

#### Analysis targets top squark pair production


- compressed scenario ( $\Delta m = m_{\tilde{t}} m_{\tilde{\gamma}} < m_W$ )
- 4-body decays 0


#### Search strategy

- 1 lepton final state with use of soft leptons
  - $pT(\mu) > 3.5 \text{ GeV}, pT(e) > 5 \text{ GeV}$
- Require  $p_{\tau}(jet1) > 110$  GeV for ISR boost
- Trigger based on  $p_T^{miss}$  and  $H_T^{miss}$ 0
- S vs bkg discrimination via set of 8 BDTs trained for different  $\Delta m$  scenarios
- Counting experiment in 8 (overlapping) signal regions 0 (after cut on BDT output)


#### Preselection

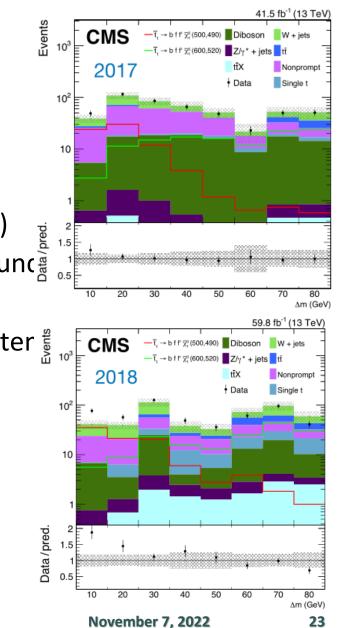
- Exactly 1 soft lepton with pT < 30 GeV
- HT > 200 GeV 0
- pTmiss > 280 GeV 0
- Δφ (jet1, jet2) < 2.5





22




#### Search for top squarks decaying via the four-body mode in single-lepton final states SUS-21-003

### Non-prompt background prediction

- Estimated via tight-to-loose method
- Includes systematic uncertainty for flavor composition in CR vs SR 0

### **Prompt background prediction**

- Control regions at low BDT score, enhanced in W (0 loose b) or  $t\bar{t}$  (>1 tight b)
- Estimated using MC-derived transfer factor, after subtracting other backgrounce 0 from yield in control region
- ~ 2.5  $\sigma$  deviation for  $\Delta m = 10 \ GeV$





| CADI       | Final state                             | X mass [TeV] | Local (global)<br>significance    | Publication              |
|------------|-----------------------------------------|--------------|-----------------------------------|--------------------------|
| EXO-19-012 | High mass dijets                        | 8 TeV        | Prob from QCD<br>10 <sup>-4</sup> | JHEP05(2020)33           |
| EXO-21-010 | Paired dijets                           |              | 3.9(1.6)/<br>3.6(2.5)             | Submitted to JHEP        |
| EXO-20-008 | B-tagged dijet                          | -            | -                                 | Submitted PRD            |
| EXO-20-007 | Trijet resonances                       | 2.9          | 3.2(1.8)                          | PLB 832 (2022)<br>137263 |
| EXO-21-004 | Multijet scouting                       | 0.75         |                                   | Pre-app/unblinded        |
| EXO-20-001 | W(had) + gamma                          | 1.6(nar-bro) | 2.8(1.1)-3.1(1.7<br>)             | PLB 826 (2022)<br>136888 |
| EXO-20-002 | Right-handed W & heavy<br>neutrino→llqq | 6 (mN =0.8)  | 2.95(2.78)                        | JHEP 2204 (2022)<br>047  |



### High pT dileptons



| CADI              | Final state                       | X mass [TeV]                 | Local (global)<br>significance | Publication             |
|-------------------|-----------------------------------|------------------------------|--------------------------------|-------------------------|
| <u>EXO-19-019</u> | Z' to dileptons                   | 0.5 & 0.7                    | 2.4 & 3.1(1.4)                 | JHEP 2107<br>(2021) 208 |
| <u>SMP-21-002</u> | Forward-<br>backward<br>asymmetry | discrepancy<br>between ee/μμ | 2.4sigma                       | JHEP08(2022)063         |



### **B2G VLQ/VLL & DIB/RES**



| CADI              | Final state                       | X mass [TeV]      | Local<br>(global)<br>significa<br>nce | Publication             |
|-------------------|-----------------------------------|-------------------|---------------------------------------|-------------------------|
| B2G-21-004        | VL leptons: 4b+Ntau               | 0.6 (0.5-1)       | 2.8                                   | Submitted PLB           |
| B2G-19-004        | T->tZ(vv)                         | 1.4               | 2.5                                   | JHEP 2205<br>(2022) 093 |
| <u>B2G-21-003</u> | $X \rightarrow YH \rightarrow 4b$ | 1.6 (MY = 90 GeV) | 3.1 (0.7)                             | Submitted PLB           |
| <u>B2G-20-009</u> | $X \rightarrow VV/VH$ (had)       | 2.1, 2.9(broad)   | 3.6 (2.3)                             | CMS-PAS-<br>B2G-20-009  |



Susy



| CADI              | Final state                                 | X mass<br>[TeV]        | Local<br>(global)<br>significance | Publication                  |
|-------------------|---------------------------------------------|------------------------|-----------------------------------|------------------------------|
| <u>SUS-19-004</u> | stealth/RPV stops→t +<br>jets               | 0.4                    | 2.8                               | PRD 104 (2021)<br>032006     |
| <u>SUS-18-004</u> | 2 or 3 soft leptons<br>+ pT <sup>miss</sup> | 0.125 (∆m<br>40 GeV)   | 2.4                               | <u>JHEP 04 (2022)</u><br>091 |
| <u>SUS-20-004</u> | HH(4b)+ME                                   | Bin 11 (in<br>22 bins) | 3.3 (2.1)                         | JHEP 2205<br>(2022) 014      |

