Search for Dark Matter annihilation with a combined analysis of dwarf spheroidal galaxies from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS

4th World Summit on Exploring the Dark Side of the Universe (EDSU2022) La Réunion, 8th November 2022

Daniel Kerszberg (IFAE-BIST), Céline Armand, Eric Charles, Mattia di Mauro, Chiara Giuri, J. Patrick Harding, Tjark Miener, Emmanuel Moulin, Louise Oakes, Vincent Poireau, Elisa Pueschel, Javier Rico, Lucia Rinchiuso, Daniel Salazar-Gallegos, Kirsen Tollefson, Benjamin Zitzer for the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations

Dark Matter indirect searches

- Looking for DM particles self-annihilating into SM particles
- Gamma-rays are not deflected by magnetic fields and trace back to original source

 \rightarrow Critical to identify the (physical) origin of the signal and study DM spatial distribution

- Classical targets for gamma-ray experiments include among others:
 - The Galactic Center (high DM content with high uncertainties)
 - Dwarf spheroidal galaxies (lower DM content with smaller uncertainties)
- Here we will focus on dwarf spheroidal galaxies (dSphs) for which:
 - The expected astrophysical gamma-ray emission is negligible
 - Large data sets have been already collected

 \rightarrow Combining data from existing experiments allows to maximize the sensitivity to potential DM signals by increasing the statistics without requesting more observation time

Involved experiments

- Initiative by 5 gamma-ray experiments to combine their observations of dwarf galaxies:
 - Fermi-LAT
 - HAWC
 - H.E.S.S.
 - MAGIC
 - VERITAS

Fermi-LAT

- Satellite in operation since 2008
- Energy range:
 20 MeV above 300 GeV
- Field of view ~20% of the sky
- Scan the whole sky every
 ~3 hours

Fermi-LAT: in orbit at 550 km

 Array of water Cherenkov detectors in operation since 2013

Energy range:
 300 GeV - 100 TeV

• Field of view ~15% of the sky

HAWC: Puebla, Mexico, 4100 m

H.E.S.S.

• Array of five Cherenkov telescopes

- Phase I with 4 telescopes of 12 m diameter since 2003
- Phase II with the addition of a telescope of 28 m diameter since 2012
- Energy range:
 30 GeV 100 TeV

HESS: Khomas Highland, Namibia, 1800 m

• Field of view of 5°

MAGIC

MAGIC consists of two 17 m diameter Cherenkov telescopes

- First telescope since 2004
- Second telescope since 2009

Energy range:
 50 GeV - 50 TeV

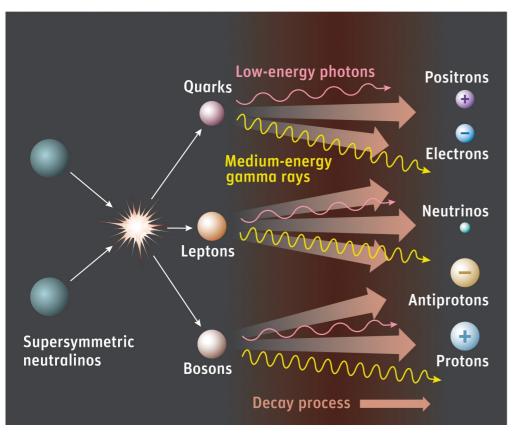
• Field of view of ~3.5°

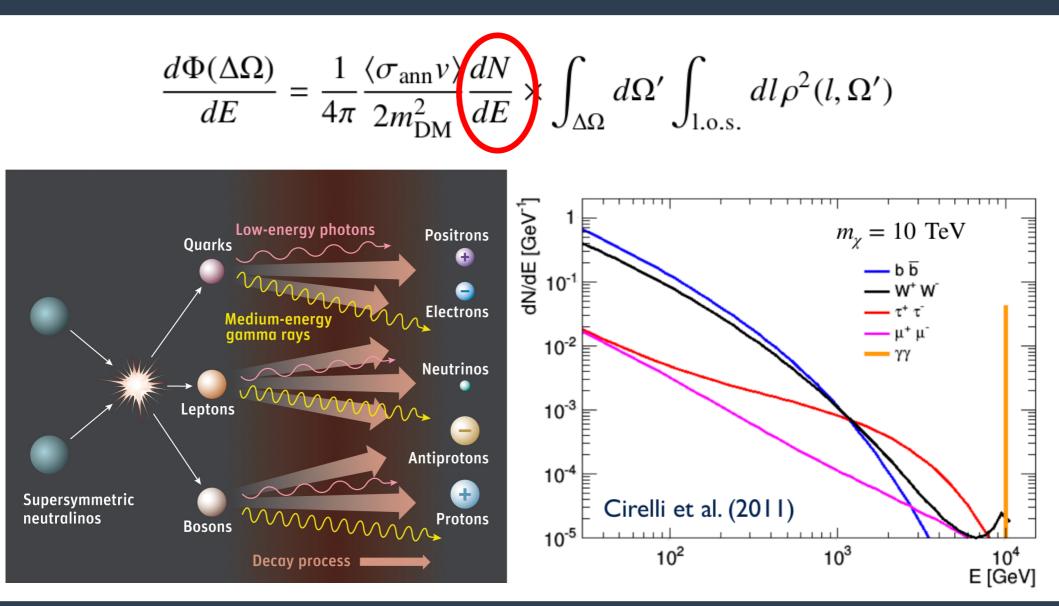
MAGIC: La Palma, Spain, 2200 m

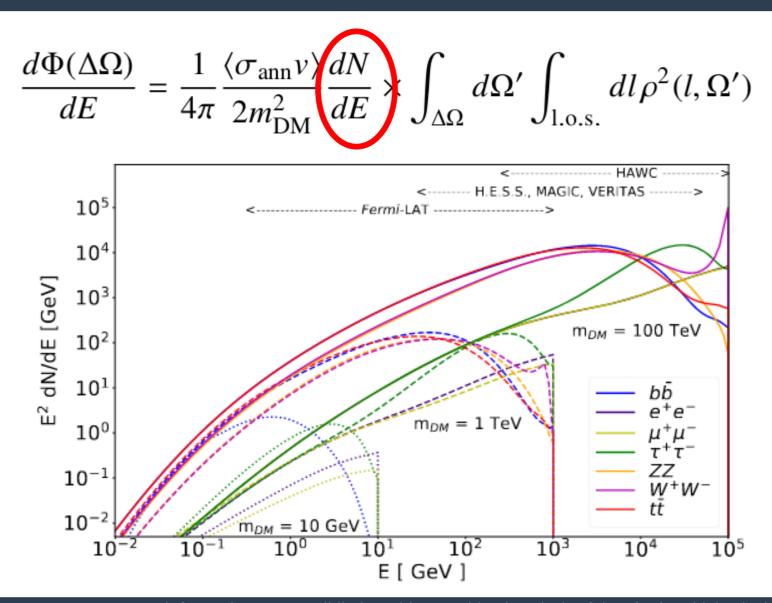
VERITAS

 Array of four 12 m diameter Cherenkov telescopes since 2007

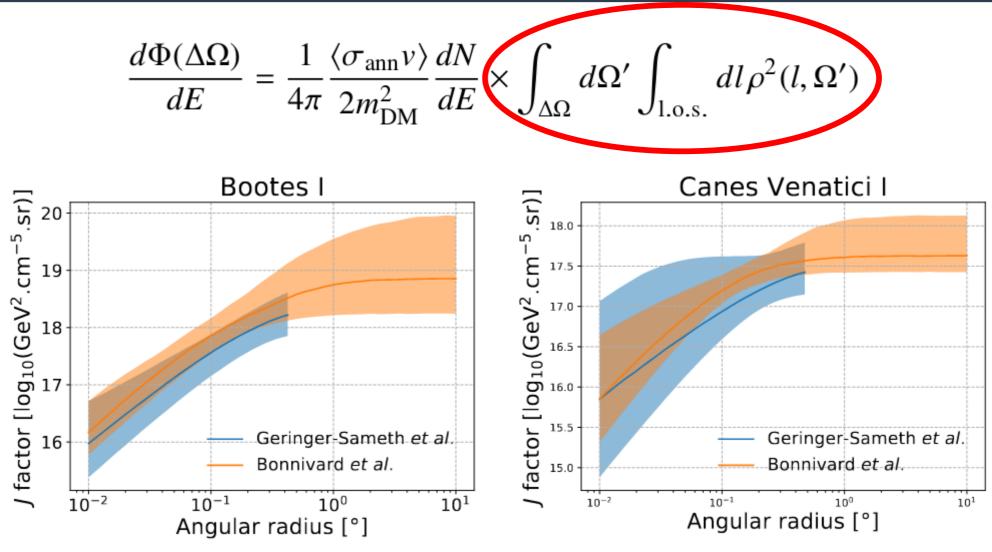
 Energy range: 100 GeV - 30 TeV


• Field of view of 3.5°


VERITAS: Arizona, USA, 1300 m


List of targets

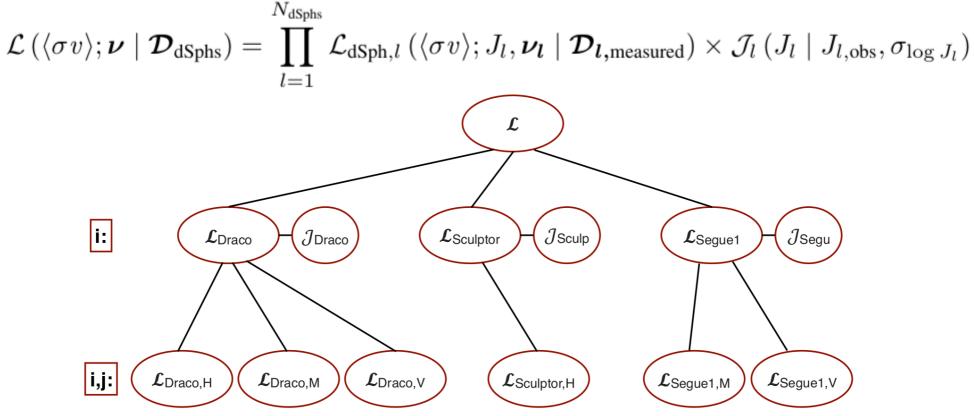
			Fermi-LAT	HAWC	H.E.S.	.S, MAGIC, V	VERITAS
		Source name	Exposure (10^{11} sm^2)	$ \Delta \theta $ (°)	IACT	Zenith (°)	Exposure (h)
•	In this project we use	Boötes I	2.6	4.5	VERITAS	15 - 30	14.0
	a list of 20 dwarf	Canes Venatici I	2.9	14.6	-	_	_
	galaxies for which	Canes Venatici II	2.9	15.3	_	_	_
		Carina	3.1		H.E.S.S.	27 - 46	23.7
	individual	Coma Berenices	2.7	4.9	H.E.S.S.	47 - 49	11.4
	collaborations already				MAGIC	5 - 37	49.5
	published results	Draco	3.8	38.1	MAGIC	29 - 45	52.1
	published results				VERITAS	25 - 40	49.8
		Fornax		_	H.E.S.S.	11 - 25	6.8
		Hercules	2.8	6.3	-	—	_
•	In total 15 different	Leo I	2.4	6.7	-	_	_
•	In total, 45 different	Leo II	2.6	3.1	-	_	_
	data sets used	Leo IV	2.4	19.5	-	_	_
		Leo V	2.4	-	-	_	_
		Leo T	2.6	_	_	_	_
		Sculptor	2.7	_	H.E.S.S.	10 - 46	11.8
		Come I			_ MAGIC_	$\bar{1}\bar{3}-\bar{3}\bar{7}$	-158.0
		Segue I	2.5	2.9	VERITAS	15 - 35	92.0
		Segue II	$\bar{2}.\bar{7}$				
		Sextans	2.4	20.6	_	_	_
		Ursa Major I	3.4	32.9	-	_	_
		Ursa Major II	4.0	44.1	MAGIC	35 - 45	94.8
		Ursa Minor	4.1	-	VERITAS	35 - 45	60.4


$$\frac{d\Phi(\Delta\Omega)}{dE} = \frac{1}{4\pi} \frac{\langle \sigma_{\rm ann} v \rangle}{2m_{\rm DM}^2} \frac{dN}{dE} \times \int_{\Delta\Omega} d\Omega' \int_{\rm l.o.s.} dl \rho^2(l,\Omega')$$

Daniel Kerszberg

Examples of J-factors vs radius for two dSphs

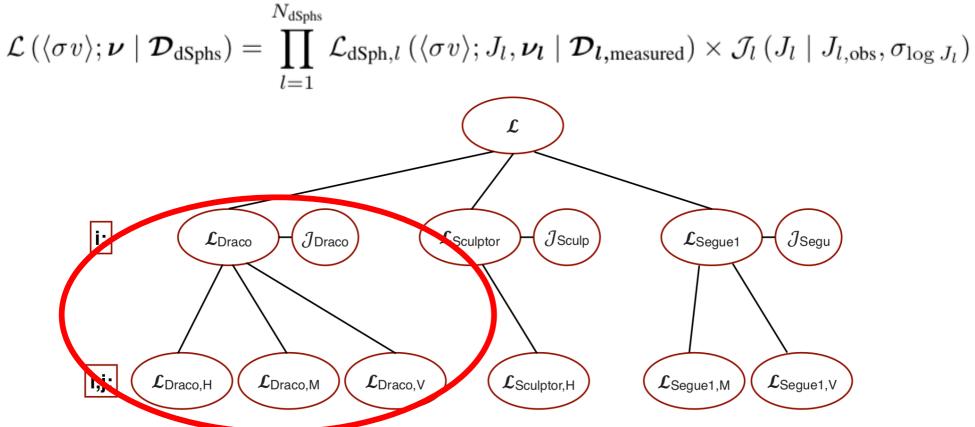
Combined likelihood analysis


• Expected gamma-ray flux from DM annihilation:

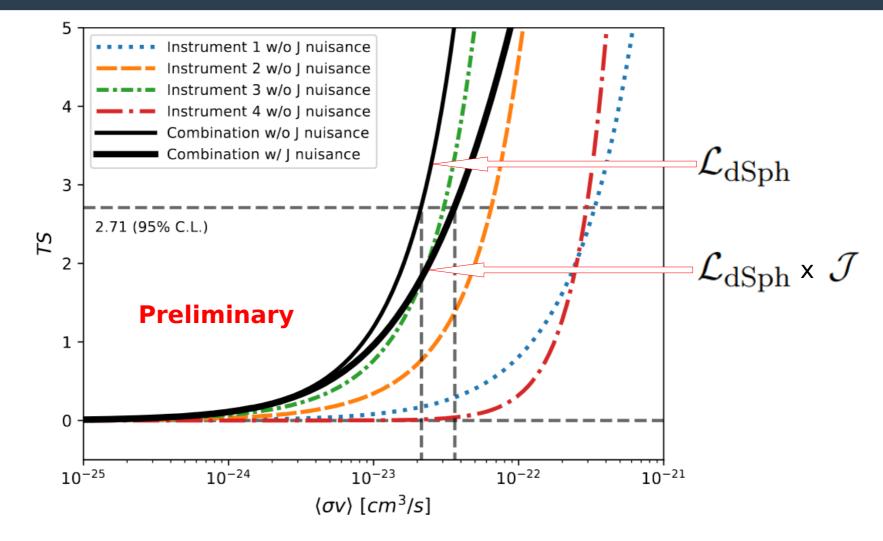
$$\frac{\mathrm{d}^{2}\Phi\left(\langle\sigma v\rangle,J\right)}{\mathrm{d}E\mathrm{d}\Omega} = \frac{1}{4\pi} \times \frac{\langle\sigma v\rangle}{2m_{\mathrm{DM}}^{2}} \sum_{f} \mathrm{BR}_{f} \frac{\mathrm{d}N_{f}}{\mathrm{d}E} \times \frac{\mathrm{d}J}{\mathrm{d}\Omega}$$

- Using as many common ingredients as possible:
 - Common range of channels and DM masses:
 - From 5 GeV to 100 TeV using the DM spectra from Cirelli et al. [JCAP 1103:051, 2011]
 - Studied 7 annihilation channels in total
 - Same J-factor values and statistical uncertainties
- Individual experiments shared likelihood profile for each dSph/channel/mass combination for a fixed value of the J-factor
 - statistical uncertainties on the J-factor are taken into account (the J-factor being a nuisance parameter in the combined likelihood)

Combined likelihood analysis


Combined likelihood:

- The combination was performed with two independent softwares:
 - glike: https://doi.org/10.5281/zenodo.4028908
 - LklCombiner: https://doi.org/10.5281/zenodo.4450884

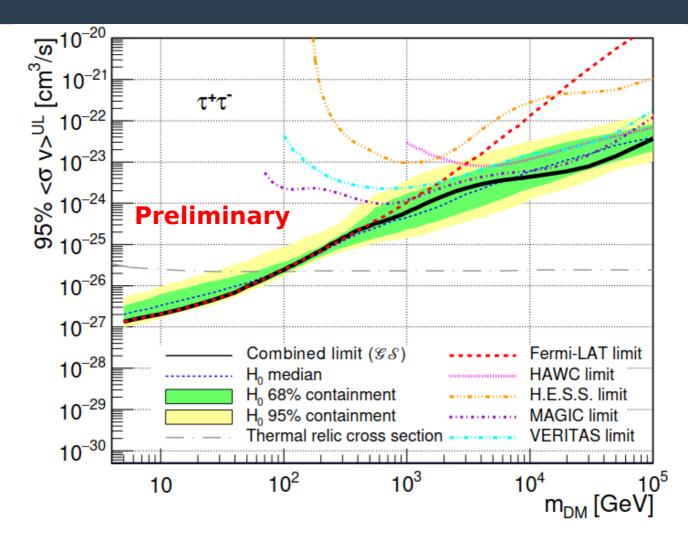

Combined likelihood analysis

Combined likelihood:

- The combination was performed with two independent softwares:
 - glike: https://doi.org/10.5281/zenodo.4028908
 - LklCombiner: https://doi.org/10.5281/zenodo.4450884

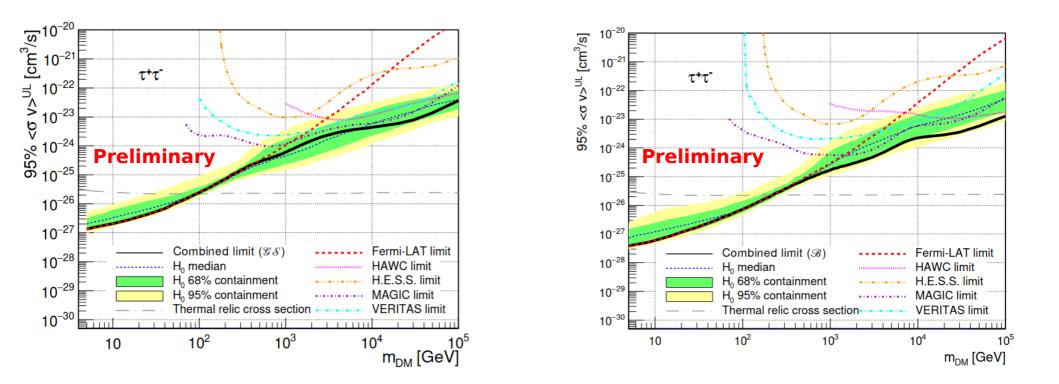
Combined likelihood analysis: an example for one dSph

The total likelihood combines the likelihood of the 20 targets!


Daniel Kerszberg

Uncertainty on the DM content

- The J-factor estimation is the largest source of uncertainty in this analysis
- We used 2 sets of J-factors to compare the effect on the final results
 - From A. Geringer-Sameth et al.
 [APJ 801:74, 2015]
 - From V. Bonnivard et al. [MNRAS 446:3002, 2015 and MNRAS 453:849, 2015]
- Some dSphs are marginally affected but some are very affected


-			
-	Name	$\log_{10} J (\mathcal{GS} \text{ set}) \\ \log_{10} (\text{GeV}^2 \text{cm}^{-5} \text{sr})$	$\log_{10} J \ (\mathcal{B} \text{ set})$ $\log_{10} (\text{GeV}^2 \text{cm}^{-5} \text{sr})$
-	D - "+ I		
	Boötes I	$18.24^{+0.40}_{-0.37}$	$18.85^{+1.10}_{-0.61}$
	Canes Venatici I	$17.44_{-0.28}^{+0.37}$	$17.63^{+0.50}_{-0.20}$
<	Canes Venatici II	$17.65\substack{+0.45\\-0.43}$	$18.67^{+1.54}_{-0.97}$
	Carina	$17.92^{+0.19}_{-0.11}$	$18.02\substack{+0.36\\-0.15}$
<	Coma Berenices	$19.02^{+0.37}_{-0.41}$	$20.13^{+1.56}_{-1.08}$
	Draco	$19.05^{+0.22}_{-0.21}$	$19.42_{-0.47}^{+0.92}$
	Fornax	$17.84_{-0.06}^{+0.11}$	$17.85_{-0.08}^{+0.11}$
	Hercules	$16.86^{+0.74}_{-0.68}$	$17.70^{+1.08}_{-0.73}$
	Leo I	$17.84_{-0.16}^{+0.20}$	$17.93\substack{+0.65\\-0.25}$
	Leo II	$17.97\substack{+0.20 \\ -0.18}$	$18.11_{-0.25}^{+0.71}$
	Leo IV	$16.32^{+1.06}_{-1.70}$	$16.36^{+1.44}_{-1.65}$
	Leo V	$16.37\substack{+0.94 \\ -0.87}$	$16.30^{+1.33}_{-1.16}$
	Leo T	$17.11\substack{+0.44 \\ -0.39}$	$17.67^{+1.01}_{-0.56}$
	Sculptor	$18.57^{+0.07}_{-0.05}$	$18.63_{-0.08}^{+0.14}$
~	Segue I	$19.36\substack{+0.32\\-0.35}$	$17.52^{+2.54}_{-2.65}$
\sim	Segue II	$16.21^{+1.06}_{-0.98}$	$19.50^{+1.82}_{-1.48}$
	Sextans	$17.92^{+0.35}_{-0.29}$	$18.04_{-0.28}^{+0.50}$
	Ursa Major I	$17.87\substack{+0.56\\-0.33}$	$18.84_{-0.43}^{+0.97}$
\leq	Ursa Major II	$19.42_{-0.42}^{+0.44}$	$20.60^{+1.46}_{-0.95}$
-	Ursa Minor	$18.95\substack{+0.26\\-0.18}$	$19.08^{+0.21}_{-0.13}$
-		-	

Combined limits

Combined limits are up to a factor 2-3 more constraining

Comparison of the limits using two different sets of J-factors

"Bonnivard" provides better limits than "Geringer-Sameth" by a factor 2-6

Conclusion

- This analysis framework allows us to perform multi-instrument and multi-target analysis
- No significant DM signal was observed
- Combined limits range from 5 GeV to 100 TeV and improve individual limits up to a factor 2 to 3
- Using 2 different sets of J-factors we were able to study the systematic impact on the results:
 - limits can vary by a factor of 2 to 6
 - combining many targets allows to minimize the importance of single dSphs, particularly relevant when their J-factor is (very) uncertain
- Combination including other messengers such as neutrinos is possible!