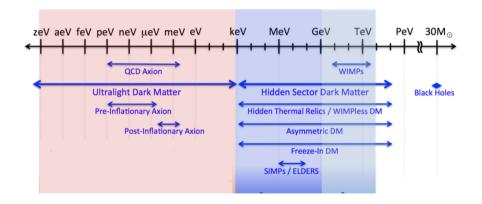
Light thermal dark matter and its possible probes

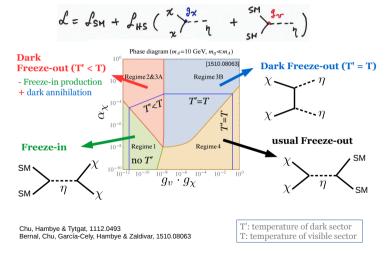
[ARXIV:2205.10149 [HEP-PH]]

EDSU2022 Nov 7–11, 2022 LA RÉUNION, FRANCE

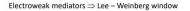
SREEMANTI CHAKRABORTI


LAPTh, Annecy Nov 09, 2022 in collaboration with Shigeki Matsumoto Yu Watanabe TOBIAS BINDER Kavli IPMU, University of Tokyo, Japan

IPMU


The man and the

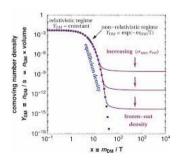
Different thermal histories of DM

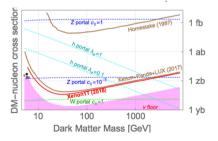


credit : Bryan Zaldivar

WIMPs...

WIMP paradigm: $\sigma_{ann}(v/c) \approx 1 \text{ pb} \Rightarrow \Omega_{DM} \approx 0.12$

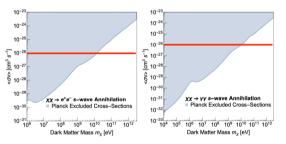

$$\sigma(v/c) \propto - \begin{bmatrix} G_{F}^{2} m_{DM}^{2} \text{ for } m_{DM}^{2} < m_{W} \\ \\ 1/m_{DM}^{2} \text{ for } m_{DM}^{2} > m_{W} \end{bmatrix}$$


It modeled decades of direct search experiment designs

WIMP miracle

few GeV < m_< few TeV \Rightarrow

But....



Maybe lighter dark sectors?

5

Freeze-out scenario with **light dark matter** requires a **light mediator** to explain the relic density, or dark matter is overproduced.

But

Liu et. al, 2016

• Light DM below 10 GeV is excluded by CMB if DM annihilation into SM is *s*-wave.

 The constraint is much weaker if other partial waves are dominant in the annihilation cross-section

Forbidden DM Resonant DM Katayose et. al, 2021

A velocity dependence is needed

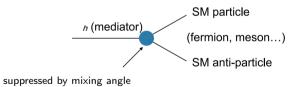
The model

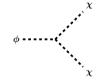
$$\begin{split} \mathscr{L} = \mathscr{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} \chi)^2 - \frac{\mu_{\chi}^2}{2} \chi^2 - \frac{\lambda_{H\chi}}{2} |H|^2 \chi^2 - \frac{\lambda_{\chi}}{4!} \chi^4 \\ &+ \frac{1}{2} (\partial_{\mu} \Phi)^2 - \frac{\mu_{\Phi\chi}}{2} \Phi \chi^2 - \frac{\lambda_{\Phi\chi}}{4} \Phi^2 \chi^2 - V(\Phi, H), \\ V(\Phi, H) = \mu_{\Phi H} \Phi |H|^2 + \frac{\lambda_{\Phi H}}{2} \Phi^2 |H|^2 + \mu_1^3 \Phi + \frac{\mu_{\Phi}^2}{2} \Phi^2 + \frac{\mu_3}{3!} \Phi^3 + \frac{\lambda_{\Phi}}{4!} \Phi^4, \end{split}$$

New particles scalar 1 : χ , Z_2 odd \rightarrow DM

scalar 2 : ϕ' , charge neutral

After the electroweak symmetry breaking


$$\begin{array}{l} H = (0, v_H + h')^T / \sqrt{2}, v_H \simeq 246 \, \text{GeV} \\ \Phi = v_{\Phi} + \phi', v_{\Phi} = 0 \end{array} \qquad \qquad \begin{pmatrix} h \\ \phi \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h' \\ \phi' \end{pmatrix}$$


Interactions

$$\begin{split} \mathscr{L}_{\rm int} &= -\frac{C_{h\chi\chi}}{2} h\chi^2 - \frac{C_{\phi\chi\chi}}{2} \phi\chi^2 - \frac{C_{hh\chi\chi}}{4} h^2 \chi^2 - \frac{C_{\phih\chi\chi}}{2} \phi h\chi^2 - \frac{C_{\phi\phi\chi\chi}}{4} \phi^2 \chi^2 - \frac{\lambda_{\chi}}{4!} \chi^4 \\ &- \frac{s_{\theta}\phi + c_{\theta}h}{v_H} \sum_{f} m_f \bar{f} + \left[\frac{s_{\theta}\phi + c_{\theta}h}{v_H} + \frac{(s_{\theta}\phi + c_{\theta}h)^2}{2v_H^2} \right] \left(2m_W^2 W_{\mu}^{\dagger} W^{\mu} + m_Z^2 Z_{\mu} Z^{\mu} \right) \\ &- \frac{C_{hhhh}}{3!} h^3 - \frac{C_{\phi}hh}{3!} \phi h^2 - \frac{C_{\phi\phi}h}{2} \phi^2 h - \frac{C_{\phi\phi\phi}}{3!} \phi^3 h \\ &- \frac{C_{hhhh}}{4!} h^4 - \frac{C_{\phi hhh}}{3!} \phi h^3 - \frac{C_{\phi\phih}}{4} \phi^2 h^2 - \frac{C_{\phi\phi\phih}}{3!} \phi^3 h - \frac{C_{\phi\phi\phi\phi}}{4!} \phi^4 + \cdots \end{split}$$

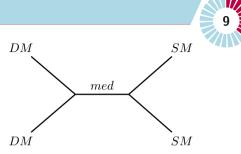
$$\begin{split} C_{h\chi\chi} &= \lambda_{H\chi} \nu_{H} c_{\theta} - \mu_{\phi\chi} s_{\theta}, \\ C_{\phi\chi\chi} &= \lambda_{H\chi} \nu_{H} s_{\theta} + \mu_{\phi\chi} c_{\theta}, \\ C_{hh\chi\chi} &= \lambda_{H\chi} c_{\theta}^{2} + \lambda_{\phi\chi} s_{\theta}^{2}, \\ C_{\phi h\chi\chi} &= \lambda_{H\chi} c_{\theta} s_{\theta} - \lambda_{\phi\chi} s_{\theta} c_{\theta}, \\ C_{\phi \phi\chi\chi} &= \lambda_{H\chi} s_{\theta}^{2} + \lambda_{\phi\chi} c_{\theta}^{2}. \end{split}$$

not suppressed by mixing angle

we focus on

the Resonant annihilation region

 $m_{\phi}\simeq 2m_{\chi}$

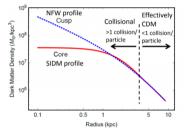

Mediator is a little heavier than twice of DM mass

• Dark matter annihilates into SM particles through s-channel resonance from ϕ mediation.

 Enhanced cross-section keeps the dark sector coupling down in order to match with the observed relic density

$$\sigma v \left(\chi \chi \to f_{\rm SM} \right) \simeq \frac{32 C_{\phi \chi \chi}^2}{m_{\phi}^5} \frac{\left[\Gamma \left(\phi \to f_{\rm SM} \right) \right]_{m_{\phi}^2 \to s}}{\left(v^2 - v_R^2 \right)^2 + 16 \Gamma_{\phi}^2(s) / m_{\phi}^2} \qquad \langle \sigma v \left(\chi \chi \to f_{\rm SM} \right) \rangle_{v_0} \simeq \int_0^\infty dv \, \sigma v \left(\chi \chi \to f_{\rm SM} \right) f(v, v_0) \\ S \simeq m_{\phi}^2 (1 + v^2/4) / (1 + v_R^2/8)^2 \\ V_R^2 \equiv 4 (m_{\phi} / m_{\chi} - 2), \gamma \equiv \Gamma_{\phi}^2(s) / m_{\phi}^2$$

The mixing angle, ie, $\sin \theta$ is constrained to very low values



Self-interactions

10

Why self-interaction?

A solution to small-scale structure problem

Direct detection of SIDM, S. Tulin

• Stronger self-scattering needed for (dwarf-sized) halos

 $\frac{\sigma_{SI}}{m_{\rm DM}} \sim 0.5-10~{\rm cm^2/g}$ at dwarf scales of DM velocity $\sim 10~{\rm km/s}$

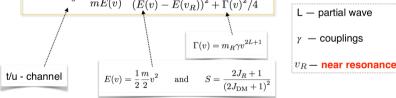
O. D. Elbert et al. 2016, K. Bondarenko 2016,....

Weaker self-scattering favoured by cluster merging/halo profiles etc

 $\frac{\sigma_{SI}}{m_{\rm DM}} \sim 0.2 - 1~{\rm cm}^2/{\rm g}$ at cluster scales of DM velocity ~ 1000 km/s

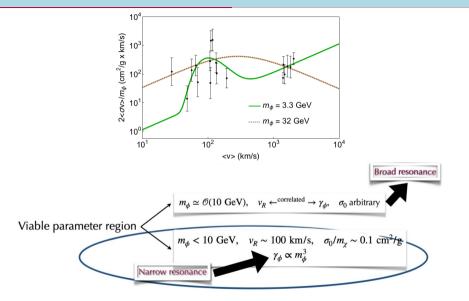
O. D. Elbert et al. 2016, K. Bondarenko 2016,....


A velocity-dependence in DM self-scattering

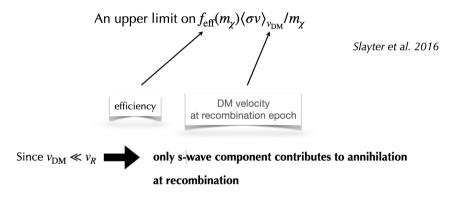

Possibilities : a light mediator

Spergel & Steinhardt 1999, Bringmann, et al. 2016

OR..

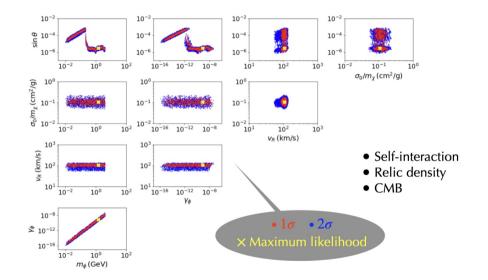

SIDM via a resonance [XC, C. Garcia-Cely, H. Murayama, 1810.04709]

Xiaoyong Chu, Humboldt Kolleg 2019



CMB

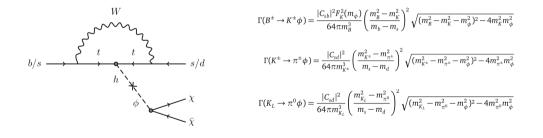
CMB puts a bound on electromagnetic energy injection into primordial plasma

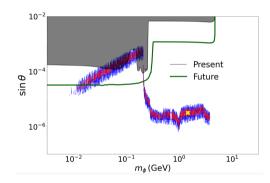


• We estimate the efficiency $f_{\text{eff}}(m_{\chi})$ taking only leptonic final states into account

• PLANCK
$$\oint f_{\text{eff}}(m_{\chi}) \langle \sigma v \rangle_{v_{\text{DM}}}/m_{\chi} \le 4.1 \times 10^{-28} \text{ cm}^{3/\text{s}/\text{GeV}} \text{ at } 95\% \text{ C.L.}$$

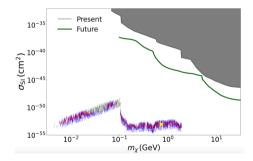
Mediator mass above \sim 4 GeV is excluded





How to probe this model ???

the light mediator can be probed in the searches for invisible decays of rare mesons



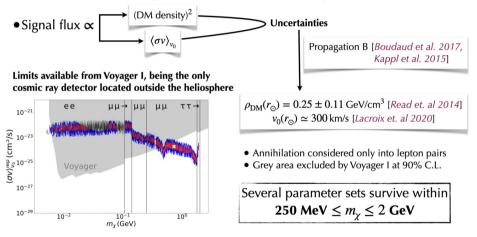
- Current limits : Belle, BaBar, E949, NA62, and KOTO at 90% C.L
- Future projections : Belle II and KLEVER

Direct detection

$$\sigma_{\rm SI}(\chi N \to \chi N) = \frac{f_N^2 m_N^4}{4\pi v_H^2 (m_\chi + m_N)^2} \left(\sin\theta \frac{C_{\phi\chi\chi}}{m_\phi^2} + \cos\theta \frac{C_{h\chi\chi}}{m_h^2}\right)^2$$

- Current limits : CDEX, DarkSide-50 and XENON1T(M) at 90% C.L
- Future projections : NEWS-G, SuperCDMS, CYGNUS, and DARWIN

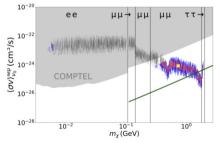
Indirect detection can constrain DM annihilation into electromagnetically charged particles


For our analysis

$$v_R \sim 10^{-3} \sim v_{
m DM}$$
 at present epoch

DM annihilation cross-section at present epoch has the maximal contribution from the higher partial waves

Cosmic ray observations


• DM annihilation into leptons contributes to cosmic ray flux

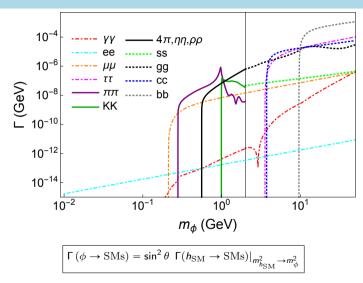
gamma-ray flux from the dark matter annihilation at the galactic center

•
$$v_0 = 400 \text{ km/s}$$

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}} \simeq \left[\frac{\langle \sigma v \rangle_{v_0}}{8\pi m_{\chi}^2} \sum_{f_{SM}} \text{Br}(\chi\chi \to f_{SM}) \frac{dN_{\gamma}}{dE_{\gamma}} \right]_{f_{SM}} \times \left[\int_{\Delta\Omega} d\Omega \int_{\text{Lo.s}} ds \rho_{\text{DM}}^2\right]$$
Produced photons typically have **MeV energies** \Rightarrow experimentally difficult to probe COMPTEL (Current) GECCO, COSI (Future)

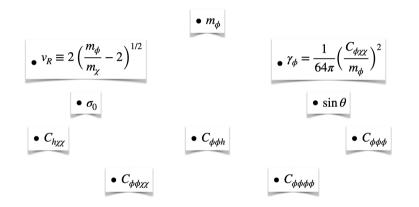
- DM annihilation cross section into SM lepton pairs
- Grey area excluded by COMPTEL at 90% C.L.
- GECCO projection in green

Near future observation almost covers surviving parameter region for 250 MeV $\leq m_{\chi} \leq$ 2 GeV



- We consider a minimal thermal light DM model that resolves the core-cusp problem of the universe if the dark matter self-scattering occurs via the Breit-Wigner resonance caused by exchanging the mediator particle in the *s*-channel.
- The model is compatible with self-interaction, relic density and CMB constraints in the dark matter mass range of 10 MeV $\leq m_{\phi} \leq$ 4 GeV.
- There are strong constraints from collider searches due to the extensive search for rare K-meson decays. Moreover, future K-meson experiments can explore most of the parameter sets with $m_{\phi} \leq 100 \text{ MeV}$
- A lighter dark matter region, $m_{\chi} \lesssim 300 \text{ MeV}$, is excluded by the indirect dark matter detection using cosmic-ray and gamma-ray observations, for the signal strength is boosted by the *s*-channel resonance.

• Only the parameter sets with 300 MeV $\lesssim m_{\chi} \lesssim$ 2 GeV avoid the severe constraints, although upcoming experiments in the near future is expected to probe this region.


BACKUP

Decay of the mediator

If $m_\phi > 2m_\chi$, mediator decays almost entirely into DM

Parameters

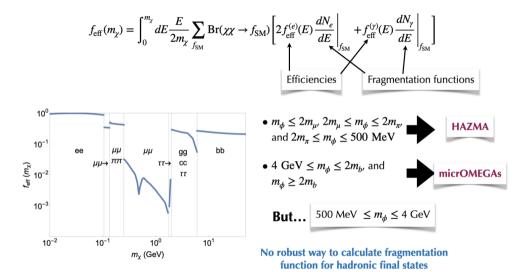
$\Delta N_{\rm eff}$

- Adding new particles with mass close to the neutrino decoupling temperature $T_D \sim 2$ MeV to the dark sector affects expansion rate of the Universe at the recombination epoch
- CMB set a lower limit on the light mediator not to alter the effective # of relativistic d.o.f ($\Delta N_{\rm eff}$)
- Assuming the instantaneous neutrino decoupling and no heating of the neutrinos from electrons and positrons

$$N_{\text{eff}} \simeq 3 \left\{ 1 + \frac{45}{11\pi^2 T_D^3} \left[s_{\chi}(T_D) + s_{\phi}(T_D) \right] \right\}^{-4/3}, \quad s_i(T_D) = h_i(T_D) \frac{2\pi^2}{45} T_D^3,$$

$$h_i(T_D) = (15x_i^4)/(4\pi^4) \int_1^\infty dy (4y^2 - 1)\sqrt{y^2 - 1}/(e^{x_i y} - 1) \qquad X_i \equiv m_i/T_D$$

$$N_{\rm eff} = 2.99 \pm 0.17$$


PLANCK excludes mediator mass below 11 MeV at 95% C.L

The velocity is estimated to be

$$v_{\rm DM} \simeq 2 \times 10^{-7} (T_{\gamma}/1 \text{ eV}) (1 \text{ GeV}/m_{\chi}) (10^{-4}/x_{kd})^{1/2}$$

 f
 $T_{\gamma} = 0.235 \text{ eV}$
 $x_{kd} = T_{kd}/m_{\chi}$

In the early kinematical decoupling scenario, $T_{kd} \sim O(T_{\text{freeze-out}})$

Since $v_{DM} \ll v_R$ are only s-wave component contributes to annihilation at recombination But at freeze-out velocity is not so suppressed so higher momenta also contribute to relic density

 $(5035 \text{ km/s}, 0, 10^{-1.1}, 32 \text{ GeV})$