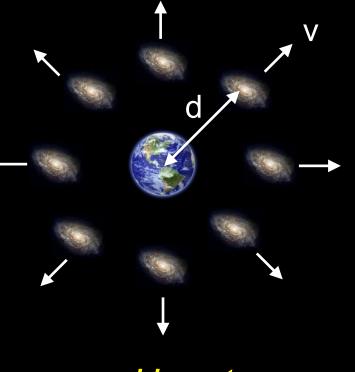
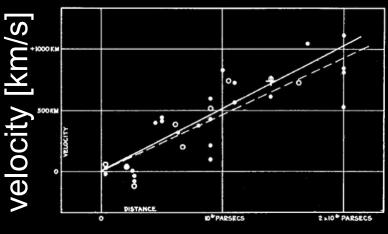
Hubble Constant at the Late Universe

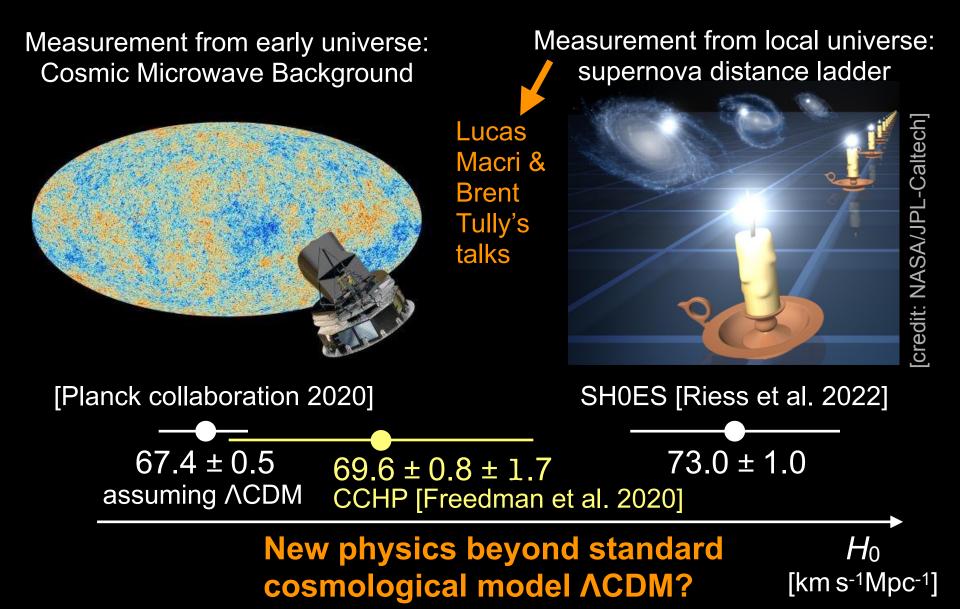

Sherry Suyu

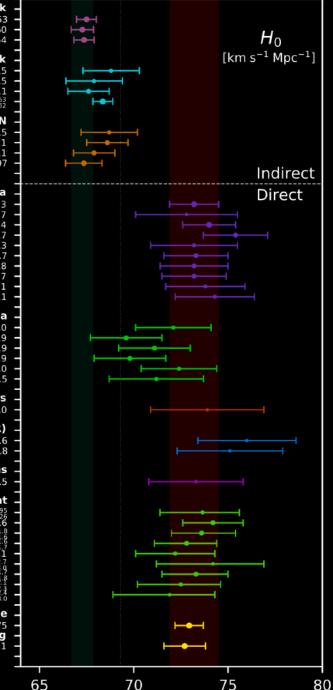
Technical University of Munich Max Planck Institute for Astrophysics Academia Sinica Institute of Astronomy and Astrophysics


> November 9, 2022 EDSU2022 @ La Réunion

Expanding Universe

1920s Discovery


Lemaître & Hubble independently measured the expansion rate $v = H_0 \times d$ \checkmark Hubble Constant



distance [Mpc]

Ho sets age and size of Universe! [Hubble 1929]

Tension in H₀

CMB with Planck

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.53 -Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60 -Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54 -

CMB without Planck

Dutcher et al. (2021), SPT: 68.8 ± 1.5 Aiola et al. (2020), ACT: 67.9 ± 1.5 Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1 Zhang, Huang (2019), WMAP9+BAO: $68.36^{+0.53}_{-0.52}$

No CMB, with BBN

Colas et al. (2020), BOSS DR12+BBN: 68.7 ± 1.5 Philcox et al. (2020), P_t +BAO+BBN: 68.6 ± 1.1 Ivanov et al. (2020), BOSS+BBN: 67.3 ± 1.1 Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 ± 0.97

Cepheids - SNIa

- Riess et al. (2020), R20: 73.2 ± 1.3 ·
- Breuval et al. (2020): 72.8 ± 2.7
- Riess et al. (2019), R19: 74.0 ± 1.4
- Camarena, Marra (2019): 75.4 ± 1.7
 - Burns et al. (2018): 73.2 ± 2.3
- Follin, Knox (2017): 73.3 ± 1.7
- Feeney, Mortlock, Dalmasso (2017): 73.2 ± 1.8 Riess et al. (2016), R16: 73.2 ± 1.7
 - Cardona, Kunz, Pettorino (2016): 73.8 ± 2.1
 - Freedman et al. (2012): 74.3 ± 2.1

TRGB – SNIa

- Soltis, Casertano, Riess (2020): 72.1 ± 2.0
- Freedman et al. (2020): 69.6 ± 1.9
- Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.9
 - Freedman et al. (2019): 69.8 ± 1.9
 - Yuan et al. (2019): 72.4 ± 2.0
 - Jang, Lee (2017): 71.2 ± 2.5

Masers

Pesce et al. (2020): 73.9 ± 3.0

Tully – Fisher Relation (TFR)

Kourkchi et al. (2020): 76.0 ± 2.6 -Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8 -

Surface Brightness Fluctuations

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Lensing related, mass model – dependent

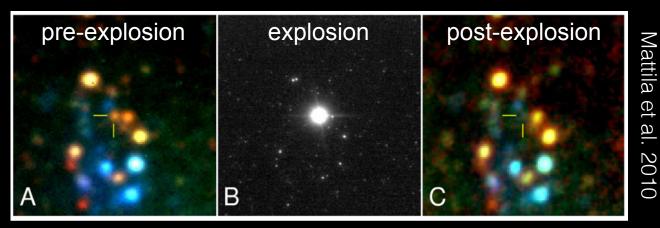
Yang, Birrer, Hu (2020): $H_0 = 73.65^{+1.95}_{-2.25}$ Millon et al. (2020), TDCOSMO: 74.2 ± 1.6 Qi et al. (2020): 73.6^{+1.6}_{-1.6} Liao et al. (2020): 72.8 ± 1.7 Liao et al. (2019): 72.2 ± 2.1 Shajib et al. (2019), STRIDES: 74.2^{+2.7}_{-1.4} Wong et al. (2019), H0LiCOW 2019: 73.3^{+1.6}_{-1.4} Birrer et al. (2018), H0LiCOW 2018: 72.5^{+2.3}_{-1.6} Bonvin et al. (2016), H0LiCOW 2016: 71.9^{-2.3}_{-3.0}

Optimistic average

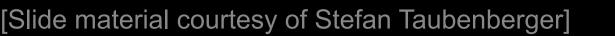
Di Valentino (2021): 72.94 ± 0.75 Ultra – conservative, no Cepheids, no lensing Di Valentino (2021): 72.7 ± 1.1

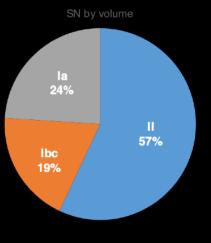
Recent H₀

[Di Valentino et al. 2021]

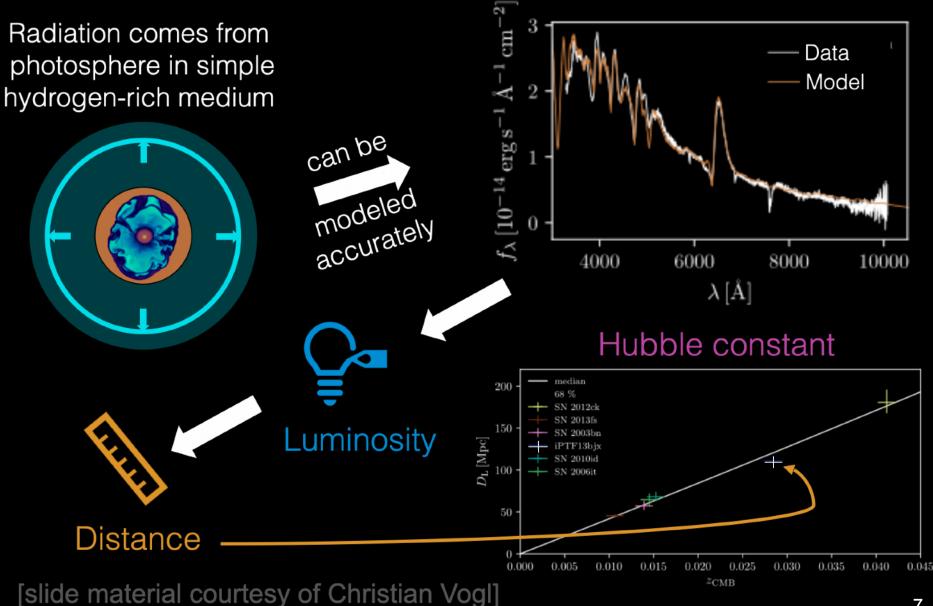

Two independent methods

• Type II supernovae


Strong gravitational lensing

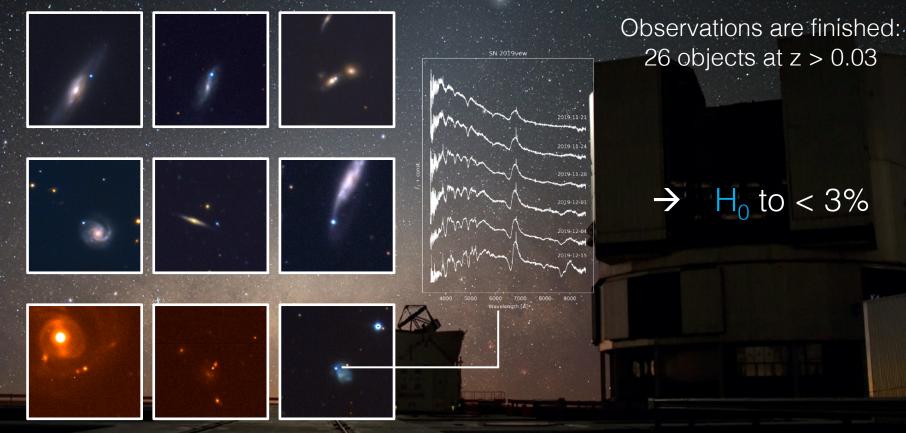

Type II supernovae

core-collapse explosions of massive red-supergiant stars



- Peak luminosity ~ 10⁹ solar luminosity
 → observable up to redshift z ~ 0.4
- Most common type of SN by volume
- Single-step distance measurement, independent of the distance ladder

Type II supernovae


accurate determination of H₀ from corecollapse supernovae

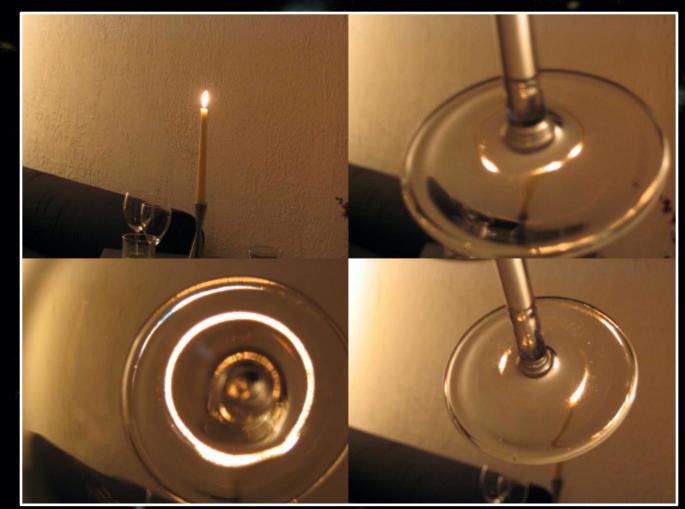
[Slide material courtesy of Stefan Taubenberger]

adH0cc

<u>accurate</u> <u>determination</u> of <u>H₀</u> from <u>core-collapse</u> supernovae https://adh0cc.github.io/

VLT large programme: ~150 hours over three semesters (PI: Leibundgut) MPA, ESO, TUM, GSI, QUB, LAM, Turku, WIS, EPFL

[slide material courtesy of Christian Vogl & Stefan Taubenberger]


Image: ESO/Y. Beletsky

Two independent methods

• Type II supernovae

Strong gravitational lensing


Strong Lensing

Image Credit: P. J. Marshall

Gravitational Strong[^]Lensing

Mass "bends" light and acts likes a lens

12

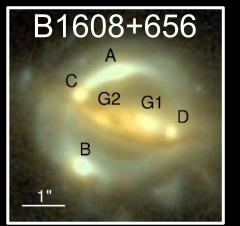
Strongly lensed supernova event

[Credit: S. More]

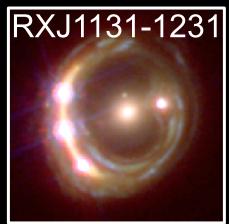
multiple images of the SN event appear around the foreground lens galaxy, at *different* times

Cosmology with lensing delays [Refsdal 1964]

Time delay:



Obtain from lens mass model

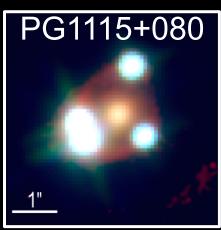

14

Cosmography: time delays Δt + mass model ϕ_{lens} \Rightarrow time-delay distance $D_{\Delta t}$ \Rightarrow Hubble constant H_0

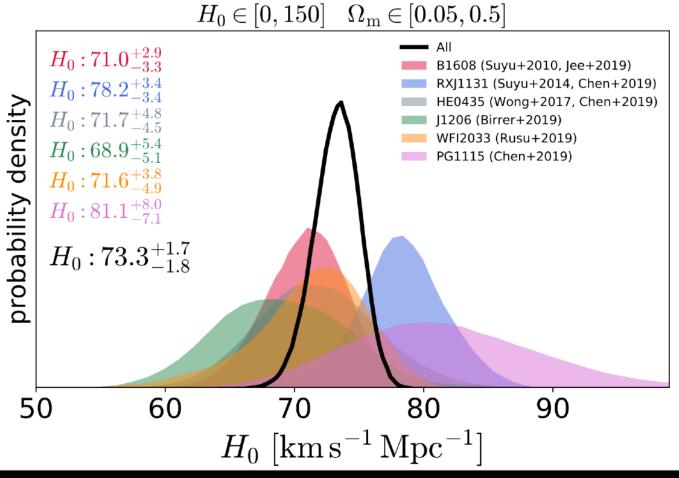
HOLICOW lensed quasars

[Suyu et al. 2010]

[Suyu et al. 2013, 2014; Tewes et al. 2013]


[Wong et al. 2017; Rusu et al. 2017; Sluse et al. 2017; Bonvin et al. 2017]

part of extended sample [Birrer et al. 2019]

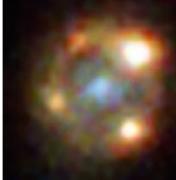

[Bonvin et al. 2019; Sluse et al. 2019; Rusu et al. 2020]

part of Keck AO sample of SHARP program [Chen et al. 2019]

H0LiCOW! H₀ from 6 strong lenses

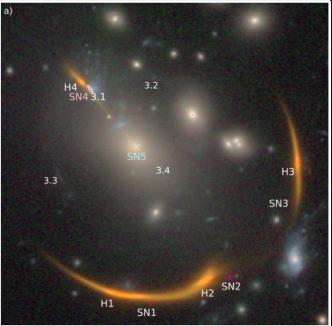
blind analysis to avoid confirmation biaswell motivated lens mass models

H₀ with 2.4% precision in flat ΛCDM

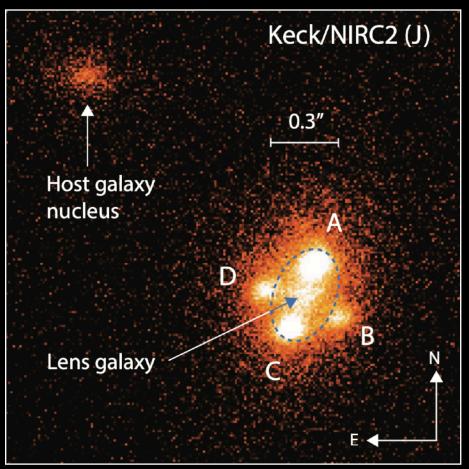

Observations

It took 50 years to observe the first strongly lensed SN event, after Refsdal proposed it in 1964

Strongly lensed supernovae **SN Refsdal**


[Kelly et al. 2015]

iPTF16geu


[Goobar et al. 2017; image credit: NASA/ESA]

SN Requiem

[Rodney et al. 2021]

SN Zwicky

[Goobar et al. 2022; arXiv:2211.00656]

[Pierel et al. 2022; arXiv:2211.03772]

HOLISMOKES!

Highly Optimised Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals

[Suyu, Huber, Cañameras et al. 2020; Paper I] www.holismokes.org

HOLISMOKERS

Jana Bayer

Markus Kromer

Stuart Sim

Dominique Sluse

James Chan

Uli

Nöbauer

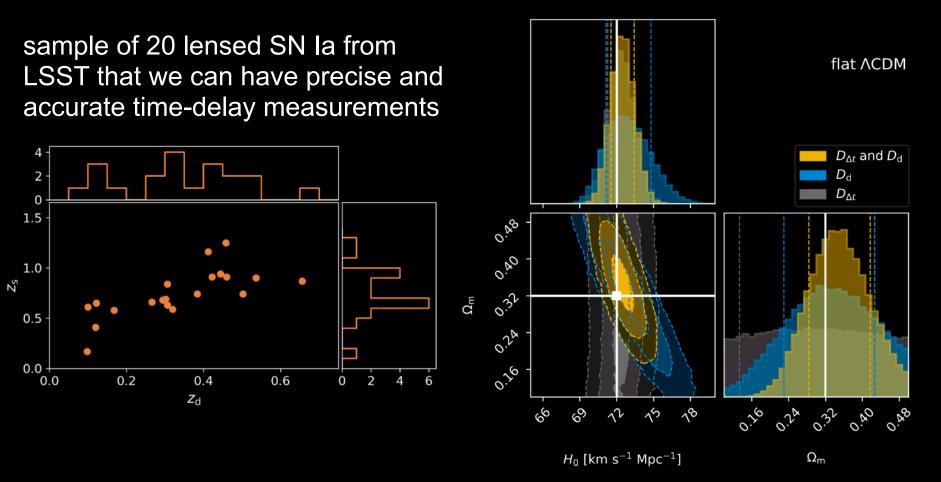
Sherry

Suyu (PI)

Frédéric Courbin

Stefan Schuldt

Stefan Taubenberger



Forecast: *H*⁰ measurement

→ anticipate H₀ constraints with 1.3% precision in flat ACDM from this sample [Suyu, Huber, Cañameras et al. 2020; Paper I]
22

Lens Search (Papers II, VI, VIII)

Follow-up Observations (Paper III)

HOLI SMOKES

Time Delays (Papers V, VII)

Lens Modelling (Papers IV, IX, X)

www.holismokes.org

Search for lensed SNe

Zwicky Transient Facility (ZTF):

Combine ZTF + Pan-STARRS to search for lensed SNe

New lenses in Pan-STARRS

- Find lensed galaxies in Pan-STARRS as potential hosts of SN
- Use Deep Learning to cope with huge data volume
- $3x10^9$ sources in Pan-STARRS 3π survey
- → 2.3x10⁷ after simple photometric cuts, star removal
- ➔ 1.0x10⁶ after apply neural network on photometric measurements
- → 1.2x10⁴ after apply convolutional neural network (CNN) on g, r, i-band image cutouts of systems
- → 330 high-quality candidates after visual inspection

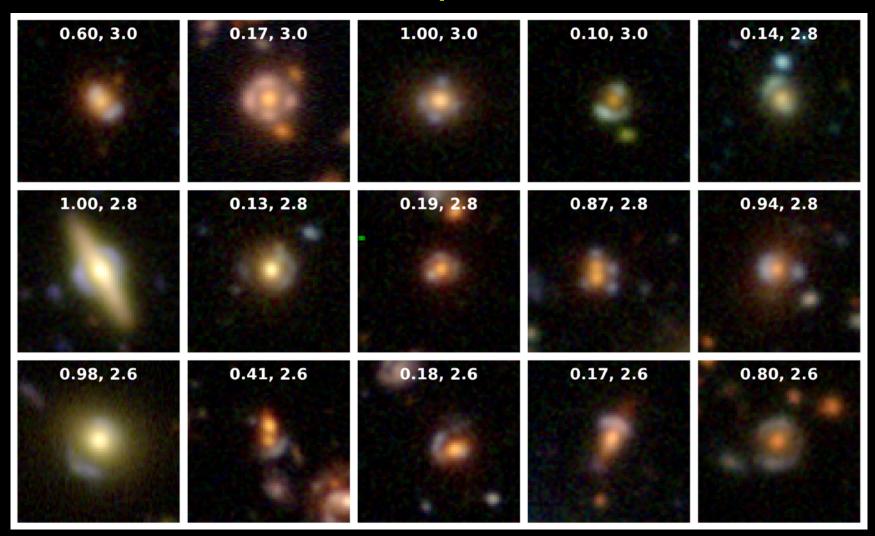
[Cañameras, Schuldt, Suyu, Taubenberger et al. 2020; HOLISMOKES II]

25

New lenses in Pan-STARRS

We found 330 new lens candidates in Pan-STARRS!

0.951, 3.00	1.000, 3.00	1.000, 3.00	1.000, 3.00	0.993, 3.00	0.995, 3.00
PS1J1647+1117	PS1J1559+3147	PS1J1508-1652	PS1J1421-0536	PS1J1415+1112	PS1J1322-0501
0.933, 3.00	0.999, 3.00	0.944, 3.00	1.000, 3.00	0.989, 2.75	1.000, 2.75
		•			
PS1J0353-1706	PS1J0324-1020	PS1J0211-1938	PS1J0141-1713	PS1J2348+0148	PS1J2336-0207
0.998, 2.75	1.000, 2.75	0.997, 2.75	1.000, 2.75	0.992, 2.75	1.000, 2.75
PS1J2233+3012	PS1J2202+0614	PS1J2200-1024	PS1J1926-2138	PS1J1749+2330	PS1J1655+0406
0.995, 2.75	0.960, 2.75	0.913, 2.75	0.983, 2.75	0.955, 2.75	0.995, 2.75
PS1J1553-0142	PS1J1445+3649	PS1J1439+0721	PS1J1422+4246	PS1J1411+2313	PS1J1349+0537


[Cañameras, Schuldt, Suyu, Taubenberger et al. 2020; HOLISMOKES II]

New lenses in HSC

ResNet reduced false-positive rate to ~0.01%!

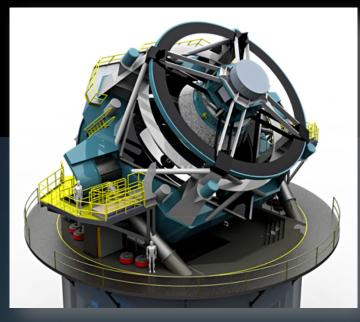
 $H \odot L I$

SMOKES

[Cañameras et al. 2021; HOLISMOKES VI]

High-z lenses in HSC

 $H \odot L I$


SMOKES

Trained additional ResNet for high-z lenses and searched in Hyper Suprime Cam (HSC) Public Data Release 2 → >700 lens candidates (~40% are newly discovered)

[Shu et al. 2022; HOLISMOKES VIII]

Rubin Observatory Legacy Survey of Space and Time (LSST)

High etendue survey telescope:

Visible sky mapped **every few nights** Cerro Pachon, Chile: **0.7**" **seeing**

Ten year movie of the entire Southern sky

Survey starts ~2024

Expect hundreds of lensed SNe in the 10-year LSST survey [Oguri & Marshall 2010; Goldstein et al. 2017; Wojtak et al. 2019]

[Part of slide material courtesy of Phil Marshall]

Summary

- Intriguing tension in the measurements of H₀ from the late Universe and the early Universe
- Independent measurements of H_0 are crucial to validate or refute the tension
- adH0cc program to measure H₀ with <3% uncertainty from a sample of 20+ Type II supernovae
- HOLISMOKES program to establish lensed supernovae as a new and competitive probe of cosmology in the era of the Rubin Observatory
- >700 new lens candidates in Pan-STARRS and HSC as potential SN hosts