

First XENONnT results on electronic recoil interactions

Diego Ramírez (UZH) on behalf of the XENON collaboration @ EDSU2022

XENO

November 10th 2022 | La Réunion, France

XENON Dark Matter Project

University of

清華大学

東京大学

Xenon dual-phase time projection chamber

Detection principle

Low-energy ER excess in XENON1T

285 events observed vs. 232 \pm 15 expected 3.3 σ Poissonian fluctuation

- Compatible with various beyond-SM signatures (solar axions, ALPs, dark photons, enhanced neutrino magnetic moment, ...)
- Consistent with potential tritium (³H) background, but required contamination conflicts with observed target purity and transparency
- 37Ar removed by the online Kr distillation. Air leak at 13 l/y could explain excess, but upper limit is 0.9 l/y
- Addressing this question with first XENONnT science data

Time projection chamber (TPC)

- 1.3 m (∅) × 1.5 m
- 8.5 t LXe in cryostat (2.5x XENON1T)
- 5.9 t LXe active (3x XENON1T)
- 494 3" PMTs (2x XENON1T)
- Five electrodes made of SS wires
- Two sets of concentric field-shaping rings, tuneable potential for top one

Neutron veto

- Cherenkov neutron veto inside inherited muon veto tank, 120 8" PMTs facing the TPC
- Reflective ePTFE walls and ultra-pure water to minimize light absorption before detection
- Neutron tagging efficiency projected to 87% with (planned) Gd-doping, 68% with current pure water

 JCAP 11 031 (2020)
- Using tagged calibration neutrons also to study the NR TPC response

Liquid xenon purification

Eur. Phys. J. C 82, 860 (2022)

- LXe purity is crucial for electrons to survive until liquid-gas interface
- Novel liquid-phase purification with replaceable filter units, some with extremely low radon emanation (science run mode)
- 2 liters of LXe per minute: 18 h to recirculate entire inventory

	Max. TPC drift time	Electron lifetime	e ⁻ survival @ max. drift length
1T	0.67 ms	0.65 ms	30%
nT	2.2 ms	> 10 ms	> 90%

Data acquisition

- Triggerless: all data above per-channel threshold stored long term
- Fully live processing
- Open source processing software: straxen@github

Radon distillation column <u>arXiv:2205.11492</u>

- "Online" removal of emanating Rn using difference in vapor pressure (Rn accumulates into LXe more than GXe)
- 222 Rn Activity concentration equilibrium of 1.77 ± 0.01 µBq/kg with gas extraction only (~ 13 µBq/kg in XENON1T)
- Designed for < 1μBq/kg with gas+liquid extraction in future runs

Xenon

Radon

First XENONnT science run (SR0)

ER and NR blinded analysis

- 97.1 days of exposure from July 6th Nov 11th 2021
- Radon column operating in gas-only mode
- 477 out of 494 PMTs operative, gain stable at 3% level
- Drift field 23 V/cm (cathode voltage limited to –2.75 kV due short-circuit with bottom screen mesh)
- Extraction field in LXe 2.9 kV/cm
- Localized high single-electron emission occurring seemingly at random, anode ramped down

ER response characterization

Two homogeneously-distributed ER sources to derive response model and define blinding region:

- ²¹²Pb from ²²⁰Rn gives a roughly flat β-spectrum, to estimate cut acceptances and energy threshold
- ³⁷Ar, which gives a mono-energetic 2.82 keV peak, to model with high statistics low-energy response and resolution near detector energy threshold

Energy reconstruction

- Four low-energy calibration points: ³⁷Ar, ^{83m}Kr, ^{129m}Xe and ^{131m}Xe
- Observed 1-2% bias in reconstructed energy used as systematic uncertainty in modeling

Light Yield [PE/keV]

Detector response stability

Bi-weekly 83m Kr, α 's from 222 Rn and γ 's from materials background used for monitoring light and charge yields

Detection and selection efficiencies

- Detection efficiency validated with data and waveform simulations (good agreement)
 - Dominated by 3-fold PMT coincidence requirement to identify an S1

- Events required to pass a range of data quality cuts
 - S1 and S2 peaks must have patterns, top/bottom area ratios etc. consistent with real events
 - S2 width consistent with the expected diffusion
 - S2 > 500 PE
 - Not within < 300 ns of a neutron veto event

• Fiducial volume cut optimization yields a mass of (4.37 ± 0.14) tonnes with low backgrounds

50

R [cm]

63

-140

Electronic recoil background model

- Energy range (1, 140) keV, exposure 1.16 t y
- NR and ER data below 20 keV blinded
- Background estimates:
 - Constraints by external measurements
 - Data-driven accidental coincidence model
 - Verification in side band before unblinding
 - Double weak processes 2VECEC (¹²⁴Xe) and 2Vββ (¹³⁶Xe) dominate background
- Various unblinding stages:
 - (10, 20) keV sideband, accidental coincidence, wall sample, full range

PRL 129, 161805 (2022)

Electronic recoil unblinding

TABLE I. The background model B_0 with fit constraint and best-fit number of events for each component in (1, 140) keV.

Component	Constraint	Fit
²¹⁴ Pb	(584, 1273)	980 ± 120
$^{85}{ m Kr}$	90 ± 59	91 ± 58
Materials	$266~\pm~51$	$267~\pm~51$
$^{136}\mathrm{Xe}$	$1537~\pm~56$	$1523~\pm~54$
Solar neutrino	297 ± 30	298 ± 29
$^{124}\mathrm{Xe}$	¥	256 ± 28
AC	0.70 ± 0.04	0.71 ± 0.03
$^{133}\mathrm{Xe}$	-	163 ± 63
$^{83\mathrm{m}}\mathrm{Kr}$	-	80 ± 16

- No excess observed
- A small ³H contamination is the most plausible explanation for the XENON1T excess. Further time-stability studies in preparation

PRL 129, 161805 (2022)

XENON1T vs. XENONnT

- Factor five background reduction with respect to XENON1T
- No excess below 5 keV found: 8.6σ exclusion on XENON1T excess

Constraints on BSM physics

PRL 129, 161805 (2022)

Summary

- Successful commissioning of new XENONnT subsystems
- Lowest background level ever achieved by a dark matter experiment: (16.1 ± 0.3) events/(t y keV)
- First results (SR0):
 - \circ 97.1 d, for an exposure of \sim 1.16 t y
 - Fully blinded analysis of electronic recoil data
 - No excess observed: new limits on BSM physics
 - XENON1T excess most likely due to small ³H
 contamination
- NR WIMP unblinding in preparation. Stay tuned!

Summary

xenonexperiment.org

xenon_experiment

xenonexperiment

xlzd.org

XLZD consortium

Joining forces towards a next-generation

Dark Matter experiment

(white paper: <u>arXiv:2203.02309</u>)

Backup

Tritium control

- Tritium (³H) as possible explanation for the XENON1T excess
- Additional contamination control in XENONnT:
 - 3 months of detector outgassing
 - 3 weeks of GXe (warm) cleaning with hot getters
 - All Xe inventory circulated in advance through Kr-removal system
 - GXe purified with hot getters when filling the TPC
- 14.3 days of special data-taking mode after SRO:
 - "Tritium-enhanced" data (TED) bypassing getters
 - Conservative estimate for ³H enhancement of at least x10

Results of blind TED analysis: no significant ³H levels in SRO