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Abstract

One of the main challenges of modern cosmology resides in the observation of the 21 cm signal
from neutral Hydrogen. The 21 cm signal has the potential of unveiling the nature of the first stars
and the timeline of their birth, through their ionisation of the neutral IGM during the Epoch of
Reionisation (EoR). Despite the efforts of many experiments around the globe, extremely bright
foregrounds, low signal to noise, and instrument systematics have prevented astronomers from
observing this high-redshift signal.

In this talk, I will present the results of the Hydrogen Epoch of Reionization Array (HERA),
a low-frequency radio interferometer located in the Karoo desert, in South Africa, and an official
precursor to the SKA. I will describe the approach chosen to mitigate foregrounds and the meth-
ods developed to deconvolve instrument characteristics, such as the chromaticity of the beam, to
reach detection. HERA has recently published the lowest upper limits on the high-redshift power
spectrum of the 21 cm signal to date, allowing to constrain, for the first time, the properties of the
high-redshift Universe. I will describe how we obtained these results and their implications in terms
of cosmology and the astrophysics of the IGM. Finally, I will outline the future of HERA and what
outstanding results we can expect from the instrument.

1 Introduction

The first light sources in the Universe appear at a time called Cosmic Dawn, a few hundred million
years after recombination and the emission of the Cosmic Microwave Background (CMB). Progres-
sively, the radiation emitted by these sources ionises the neutral atoms of the surrounding intergalac-
tic medium (IGM). This time, called the Epoch of Reionisation, is a billion-year-long missing piece in
our knowledge of cosmic history. The chronology and the morphology of cosmic reionisation are cru-
cial sources of information about the nature of the first astronomical objects, of the young Universe,
and about the formation of the first galaxies. As illustrated in Figure 1, the physical properties of the
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Figure 1: Figure illustrating the birth of the first light sources during Cosmic Dawn and their ionisa-
tion of the intergalactic medium during the Epoch of Reionisation.

source impact the shape and growth of the surrounding ionised bubble it forms, with, e.g., quasars
expected to form larger and rounder bubbles than galaxies.

If reionisation is largely unknown, we already have some clues about its history. The spectra of
distant quasars tell us that reionisation was likely over by a redshift = = 6 [1], the density of high-
redshift galaxies seems sufficient to ionise the entirety of the IGM without the help of exotic sources
[2], and the CMB optical depth is compatible with a reionisation halfway through at z = 6.5 [3, 4].
However, these results are based on strong hypotheses made about the early Universe and are not
sufficient to give a clear picture of the Epoch of Reionisation [5].

2 Measuring the 21 cm power spectrum at z > 5

A potential solution is the observation of the 21 cm signal emitted by neutral hydrogen atoms
before they got ionised by early galaxies, a direct tracer of cosmic reionisation. Indeed, the brightness
temperature of this signal is proportional to the density and ionisation level of the intergalactic gas.
The photons emitted with an exact wavelength of 21 cm are redshifted to larger wavelengths, with
the potential of mapping the distribution of neutral hydrogen in the Universe at any given time.

Many low-frequency radio experiments target this signal, for which no observation has yet been
confirmed [6, 7]. In this talk, we focus on the measurement of the power spectrum of the spatial
fluctuations of the 21 cm signal from z > 5, which contains information on both the chronology and
the morphology of reionisation. This measurement is a world-wide effort involving many interna-
tional collaborations around the word such as, e.g., the Giant Metre Wave Radio Telescope [GMRT, 8]
in India, the Low Frequency Array [LOFAR, 9] in the Netherlands, the Murchison Widefield Array
[MWA, 10] in Australia and the Hydrogen Epoch of Reionization Array [HERA, 11] in South Africa,
on which we will focus today.

2.1 The Hydrogen Epoch of Reionization Array

HERA is a radio interferometer made of (as of today) about 100 14m parabolic dishes, some of
which are shown in Figure 2. It observes a 10-degree stripe at fixed declination in the Southern
hemisphere, with a bandwidth covering frequencies ranging from 100 to 200 MHz, or redshifts 6 <



Figure 2: Picture of HERA taken on-site in January 2017. Reproduced from [12].

z < 13. In radio interferometry, one measures a visibility V;; between two antennae i and j separated
by a length b;; called baseline. This visibility measured at a frequency v writes

Vii(v) = / By; (#,v)I(#, 1) exp —27ri%bl—j~f‘ a0, )

where B;; is the beam of the instrument and I is the signal intensity. From this equation, is it clear
than the baseline length b;; is analogous to a Fourier dual of the sky angle. For this reason, dense
arrays will measure large-scale fluctuations on the sky, whilst wide arrays, such as HERA, measure
small-scale fluctuations.

One of the main difficulties with observing the 21 cm from the Epoch of Reionisation lies in ex-
tremely bright foregrounds, about 4 to 5 orders of magnitude brighter than the cosmological signal.
However, in contrast to the cosmological signal, these foregrounds are spectrally smooth, such that
we can separate these two components in Fourier space. This is the strategy chosen by HERA: max-
imising sensitivity and targeting observations in a region of Fourier space called the ‘Eor window’
where the cosmological signal dominates, despite the chromaticity of the instrument introducing
foregrounds leakage outside of their intrinsic spectral region [13]. To this end, to facilitate calibration,
and to improve the signal-to-noise ratio, HERA is a highly redundant hexagonal array, that is the
antennae are arranged such that the same baseline b;; is sampled many times [11].

2.2 The latest HERA results

In [12], the HERA collaboration presents world-leading upper limits on the 21 cm power spectrum
at z = 7.9 and z = 10.4, with one full season of data (94 nights) and 42 antennae. In Figure 3, we
present the limits obtained along Band 2 (z = 7.9), and the corresponding window functions. These
limits are over a factor two lower than our previous results [14] and allow us to put constraints on the
early Universe.

To interpret these upper limits theoretically, we confront different types of simulations to the data,
and fit for their parameters (see [15] for details). As illustrated in Figure 4, for all theory models, we



find that the posterior for the power spectrum tightens substantially, and that the IGM was heated by
z = 10.4, likely by high-mass X-ray binaries.
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Figure 4: Posterior distributions of the 21 cm power spectrum obtained with 21CMMC [16] at differ-
ent redshifts, including the two probed by HERA (left panel) and of the mean spin temperature in the
IGM at z = 10.4 (right panel). Inferences are compared when using non-HERA astrophysical data
sets, when adding partial HERA data, and when adding the full first season of HERA data. On the
left panel, different data points correspond to different experiments, the HERA results correspond to
the purple hexagons. On the right panel, the hashed region indicates temperatures below the adia-
batic cooling limit.



2.3 Building confidence in and understanding the HERA results

In [17], we introduce an end-to-end validation pipeline, helping us build confidence in our results.
We simulate visibilities including a mock cosmological signal — a Gaussian random field whose power
power spectrum goes as P(k) o« k~2, and foregrounds. These clean visibilities are then contaminated
with instrumental effects and systematics such as thermal noise, antenna gains, cross-coupling, and
cable reflections. Data sets with different components are run through the same analysis pipeline as
the observations. We are able to recover the cosmological signal in the simulated data set, outside
of the foreground-dominated (‘foreground wedge’, k¥ > 0.15 hMpc ') and of the noise-dominated
(k < 0.6 hMpc™) regions. We refer the interested reader to [17] for more details.

We also build our understanding of the measurements by studying systematics, namely with sys-
tematics chromatography [18] and getting a precise estimate of the window functions of the instru-
ment [19]. Indeed, the power measured at one Fourier mode & receives contributions from neigh-
bouring modes, which can be especially problematic for data points located close to the foreground
wedge, as shown with various test cases in [19]. These window functions, illustrated in the bottom
panel of Figure 3 in spherical space and in Figure 5 in cylindrical space, are the key to know precisely
how the true cosmological power spectrum and what is measured by the instrument differ. They will
be impacted by instrument characteristics and data analysis choices. Namely, long baselines will cor-
respond to wider window functions, facilitating foreground leakage, whilst the choice of bandwidth
and frequency taper can help narrowing them down.
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Figure 5: Upper panel: Dimensionless 21 cm power spectrum measured by HERA at z = 7.9 for one
field (in pink, see [12] for details), compared to the noise power spectrum (black dashed line). Lower
panel: Corresponding window functions (horizontal error bars).

3 Conclusions

With a full season of data and conservative analysis techniques, the HERA collaboration has been
able to bring their upper limits down by more than a factor two to obtain world-leading results
and tighten our power spectrum posteriors, ruling out cold reionisation scenarios. However, results
remain at the thermal noise limit.

Recent improvements made to the array will further lower these upper limits, thanks to a collect-
ing area multiplied by five. With new feeds, we also extended our bandwidth to 50 < v/MHz < 250,



reaching redshifts as far as z = 29 and as low as z = 4.7. The new frequencies covered will allow us
to confirm or infirm the global 21 cm signal observation claimed by EDGES [6]. Once the full array
will be deployed, with its 350 antennae, we will be able to constrain the reionisation history at z +0.1
[20].
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