

11th November, 2022

11th November , 2022

Antiproton Decelerator (AD)

Only source of slow antiprotons

26 GeV/c PS beam onto Ir target ~30 million antiprotons 5.3 MeV kinetic energy (100 MeV/c)

CERN

11th November , 2022

EDSU2022, La Réunion

ELENA: a boost to the AD physics programme

AD:

p̄ caught in Penning traps using degraders → 99.9% are lost

ELENA:

p at 100 keV at improved beam emittance

all experiments gain a factor 10-100 in trapping efficiency (degrading at low particle energies is more efficient)

"simultaneous" delivery to almost all experiments \rightarrow Gain in total beam time

additional experimental zone

Energy scale (ev)

11th November, 2022

EDSU2022, La Réunion

Variety of searches for new physics with low energy antiprotons

BASE/STEP (p̄ in Penning trap), ASACUSA (p̄He) Fundamental properties of the antiproton

ALPHA Spectroscopy of 1S-2S in antihydrogen

ASACUSA, ALPHA Spectroscopy of GS-HFS in antihydrogen

ALPHA, AEgIS, GBAR Test free fall/equivalence principle with antihydrogen

AD community: ~60 research institues/universities - 400 researchers - 5 collaboration (+1 : connection to ISOLDE with the PUMA exp.)

11th November, 2022

Motivations for antihydrogen physics

Comparison of fundamental properties of simple baryonic and anti-baryonic systems • at low energy and with high precision - possible clue to matter/antimatter asymmetry

• only neutral antimatter-only system which can be cooled down for a ballistic gravity experiment

11th November , 2022

Where are the anti-atoms??

Strong baryon asymmetry in the universe

originating from a ~10⁻¹⁰ imbalance

CP violation in the SM is by far not enough to explain this imbalance

11th November , 2022

CPT test with low energy antiprotons

EDSU2022, La Réunion

Strong baryon asymmetry in the universe

originating from a ~10⁻¹⁰ imbalance

CP violation in the SM is by far not enough to explain this imbalance

11th November, 2022

CPT test with low energy antiprotons

Could a difference between matter and antimatter fundamental properties explain baryon asymmetry?

Maybe.....

For sure that would be a sign of <u>new physics</u>

CPT theorem: "cornerstone" of QFT (with Lorentz invariance, locality and unitarity) implies properties of matter&antimatter have to be exactly equal or opposite

Dirac equation in the minimal Standard Model Extension

$$(i\gamma^{\mu}D_{\mu} - m_e + a^e_{\mu}\gamma^{\mu} - b^e_{\mu}\gamma_5\gamma^{\mu})$$
$$-\frac{1}{2}H^e_{\mu\nu}\sigma^{\mu\nu} + ic^e_{\mu\nu}\gamma^{\mu}D^{\nu} + id^e_{\mu\nu}\gamma_5\gamma^{\mu}D^{\nu})\psi = 0$$

e.g. Lorentz and CPT Tests in Hydrogen, Antihydrogen, and Related Systems, A. Kostelecky and A. Vargas, Phys. Rev. D 92, 056002 (2015)

Different measurements (even of the same quantity) are sensitive (or not) to different SME coefficients

Where are the anti-atoms??

Strong baryon asymmetry in the universe

originating from a ~10⁻¹⁰ imbalance

CP violation in the SM is by far not enough to explain this imbalance

11th November, 2022

CPT test with low energy antiprotons

baryon asymmetry:

Comparison of fundamental properties of simple baryonic and anti-baryonic

11th November, 2022

Status comparison of matter/antimatter properties at the AD

C. Carli, D. Gamba, C. Malbrunot, L. Ponce & S. Ulmer ELENA: Bright Perspectives for Low Energy Antiproton Physics Nuclear Physics News, 32:3, 21-27 (2022)

EDSU2022, La Réunion

CPT test with low energy antiprotons

baryon asymmetry:

Comparison of fundamental properties of simple baryonic and anti-baryonic systems at <u>low energy</u> and with <u>high precision</u>

11th November, 2022

Motivations for testing gravity with antihydrogen atoms 2

Gravity with <u>matter</u> scrutinized via different experimental methods Einstein Equivalent principle (EEP) extensively tested experimentally

But gravity is a peculiar force

Very weak force Lack of consistent quantum treatment

Gravity on antimatter has "never" been directly tested

Anomalous gravity would not necessarily invalidate G

"Peculiarity" of antimatter :

non detection of primordial antimatter

&

lack of experimental hints for the justification of baryon asymmetry

Need for a free-fall experiment on antimatter

GR
$$V = -\frac{Gm_1m_2}{r} (1 \mp a e^{-r/v} + b e^{-r/s})$$

a: Gravivector, b: Graviscalar

– attractive (matter-matter) +: repulsive: matter-antimatter

matter experiments: |a-b| antimatter: a+b

Formation of antihydrogen atoms: several approaches

11th November , 2022

EDSU2022, La Réunion

11th November , 2022

Formation of antihydrogen atoms: several approaches

$$+e^+ \rightarrow \bar{H} + e^+$$

$$s^{\star} \to \bar{H}^{\star} + e^{-}$$

EDSU2022, La Réunion

11th November, 2022

Formation of antihydrogen atoms: several approaches

$$+e^+ \rightarrow \bar{H} + e^+$$

$$s^{\star} \to \bar{H}^{\star} + e^{-}$$

$\bar{H} + Ps \rightarrow \bar{H}^+ + e^-$

EDSU2022, La Réunion

Bohi

(CERN)

11th November, 2022

Fallin

111 7

HEC

Antihydrogen spectroscopy

11th November, 2022

11th November , 2022

11th November , 2022

Laser cooling (anti)hydrogen is hard

- 121 nm: vacuum ultraviolet
- Challenging laser built at UBC, Canada
- Cooling takes hours (rather than msec) —

Laser cooling a likely game changer in anti-H and H studies

11th November, 2022

Laser cooling of **H**

From M. Fujiwara

M. Ahmadi et al. Nature 548, 66–69 (2017)

11th November, 2022

M. Ahmadi et al. Nature 548, 66–69 (2017)

11th November, 2022

M. Diermaier et al. Nature Communications 8, 15749 (2017)

In-beam spectroscopy apparatus

Commissioning with a beam of hydrogen from a discharge plasma

CERN

11th November, 2022

of hydrogen from a discharge plasma

CERN

11th November, 2022

Commissioning with a beam of hydrogen from a discharge plasma

CERN

11th November, 2022

Commissioning with a beam of hydrogen from a discharge plasma

CERN

11th November, 2022

Further measurements with H in view of H

Other possibility :

Measure $\pi_1 \& \sigma_1$ at the same field : 2 resonances needed, not sensitive to stray field (from the earth or from CUSP in the antihydrogen experiment)

Advantage : π_1 is sensitive to SME coefficients BUT π_1 more sensitive to magnetic field inhomogeneities

11th November, 2022

Helmholtz coils with corrections coils Cavity tilted at 45° to allow both transitions at the same time 3-layers cylindrical shielding

"Simultaneous" measurement of π_1 and $\sigma_1 = \mathbf{ppb}$ precision reached!

EDSU2022, La Réunion

SME measurements with hydrogen

Siderial variations constrained by Harvard-Smithsonian maser at mHz level

coefficients in the lab-frame are associated with three independent coefficients in the Sun-centred frame :

$$\mathcal{K}_{w_{k10}}^{Lab} = \mathcal{K}_{w_{k10}}^{Sun} \cos(\theta) - \sqrt{2} \Re e(\mathcal{K}_{w_{k11}}^{Sun}) \sin(\theta)$$
angle between B-field and Earth rotati Earth's rotational axis

72 SME coefficients involved. 48 constrained, 24 remaining and can be constrained by swapping the direction of the static B-field and measuring π_1 while using σ_1 as a proxy

$$2\pi\delta\nu(\Delta M_F) = \frac{\Delta M_F}{2\sqrt{3\pi}} \sum_{q=0}^{2} (\alpha m_r)^{2q} \left(1 + 4\delta_{q2}\right) \sum_{w} \left[-g_{w_{(2q)10}}^{0B} + H_{w_{(2q)10}}^{0B} - 2g_{w_{(2q)10}}^{1B} + 2H_{w_{(2q)10}}^{1B}\right]$$

ppb foreseen (Hz level precision) in a first stage : Improvement possible with slower beam, Ramsey method, higher count rate

see C. Malbrunot et al. RSA, 376, 2116 (2018)

PHYSICAL REVIEW A 68, 063807 (2003)

Testing CPT and Lorentz symmetry with hydrogen masers

M. A. Humphrey, D. F. Phillips, E. M. Mattison, R. F. C. Vessot, R. E. Stoner, and R. L. Walsworth Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA (Received 4 August 2003; published 9 December 2003)

 $\theta)\cos(\omega_{\oplus}T_{\oplus}) + \sqrt{2} \Im m(\mathcal{K}_{w_{k11}}^{Sun})\sin(\theta)\sin(\omega_{\oplus}T_{\oplus})$ sidereal time ion frequency

Results coming soon

Gravity with H : status of the field

ALPHA First direct measurement in 2012 (in a magnetic trap!)

$-65 < g/\bar{g} < 110$

C. Amole et al. Nature Communications 4, 1785 (2013)

11th November , 2022

Vertical position of annihilation vertex during release of trapping field

EDSU2022, La Réunion

L.J.

Now commissioning a VERTICAL TRAP with H

- increase sensitivity in up/down direction (up to 1.3m trapping range)

- much improved field control

Sign measurement planned rapidly 1% targeted \overline{H} cooling to ~20 mK and advanced magnetometry

Article

Laser cooling of antihydrogen atoms

https://doi.org/10.1038/s41586-021-03289-6

Received: 21 July 2020

Accepted: 26 January 2021

Published online: 31 March 2021

Open access

Check for updates

ARTICLE

https://doi.org/10.1038/s41467-021-26086-1

OPEN

Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production

11th November, 2022

Gravity with H : status of the field

W. A. Bertsche Phil. Trans. R. Soc. A 2018 376 20170265; DOI: 10.1098/rsta.2017.0265. (2018)

Gravity with H : status of the field

AEGIS : DEFLECTOMETER

S. Aghion et al. Nature Communications 5 (2014) 4538

Sensitivity to $\sim 10 \,\mu m$ deflection needed

11th November, 2022

Recent demonstration of pulsed formation of H (PHASE1 of AEGIS)

Communications Physics, volum 4, Article number: 19 (2021)

Gravity with H : status of the field

GBAR : USING H+

- will produce first ever \overline{H}^+ ion
- will bring antimatter to the coldest temperature ever achieved (by several orders of magnitude)

Cooling below 1 m/s : Sympathetic cooling of \overline{H}^+

CURRENTLY ATTEMPTING **H** production

neutron wavefunction $\psi_p^2(z)$. The vertical axis z provides the length scale for this phenomenon. E_n is the energy of the *n*th quantum state.

EDSU2022, La Réunion

VERTICAL TRAP

- increase up/down sensitivity (up to 1.3m trapping range) - much improved field control

Sign measurement planned soon 1% targeted \overline{H} cooling to ~20 mK and advanced magnetometry

Plurality of approaches

H BEAM

- Sensitivity to ~10 µm deflection
- cold antiproton translates in cold **H** thanks to CE mechanism

11th November, 2022

needed

Sign measurement targeted **AEgIS** 0.8 x position (mm)

S. Aghion et al. Nature Communications 5 (2014) 4538

cooling of \bar{H}^+ - opens new horizons

- Uniqueness of the physics question addressed
- H is a tool of choice for CPT and gravity with antimatter tests
- AD has produced impressive results in the last 5 years more to come. BUT it is an endurance run!
- Driving technological prowess
- Diversity of approaches is important (different challenges and systematics)
- Typical time-scales involved for new experiments and precision measurements are long (typically >10 years)
- Other "gravity" endeavours with antimatter : muonium (μ^+e^-), positronium (e^+e^-) Testing leptonic matter-antimatter systems Muonium: Testing systems containing 2nd generation particles!

Summary

