

New Physics from B Decays

Javier Fuentes-Martín

University of Granada

4th World Summit on Exploring the Dark Side of the Universe, November 8, 2022

What is experiment telling us?

No direct evidence for NP, yet many reasons to expect it [presence of a mass gap?]

A	FLAS Exotics	Search	ies* -	95%	6 CL	Upper Exclusion Lir	nits		ATLA	S Preliminary
Sta	atus: May 2020							$\int \mathcal{L} dt = (3)$	3.2 − 139) fb ^{−1}	$\sqrt{s} = 8$, 13 TeV
	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	⁻¹] Limit				Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \gamma q q$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \\ \hline \\ multi-chann \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4j\\ -\\ 2j\\ \geq 2j\\ \equiv 3j\\ -\\ \text{rel}\\ 2j/1J\\ \geq 1b,\geq 1J/\\ \geq 2b,\geq 3 \end{array}$	Yes - - - - Yes 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	M _D Ms Mth Mth Gкк mass Gкк mass Gкк mass KK mass KK mass	4.1 Te 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2\\ n=3 \ \text{HLZ NLO}\\ n=6\\ n=6, M_D=3 \ \text{TeV, rot BH}\\ n=6, M_D=3 \ \text{TeV, rot BH}\\ k/\overline{M_{Pl}}=0.1\\ k/\overline{M_{Pl}}=1.0\\ k/\overline{M_{Pl}}=1.0\\ \Gamma/m=15\%\\ \text{Tier (1,1), } \mathcal{B}(A^{(1,1)}\rightarrow tt)=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to bb \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{SSM} \ W' \to \ell\nu \\ \mathrm{SSM} \ W' \to \tau\nu \\ \mathrm{HVT} \ W' \to WZ \to \ell\nu qq q \mod t \\ \mathrm{HVT} \ V' \to WV \to qq qq \mod t \\ \mathrm{HVT} \ V' \to WH / ZH \mod t \\ \mathrm{HVT} \ W' \to WH \mod t \\ \mathrm{LRSM} \ W_R \to tb \\ \mathrm{LRSM} \ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ el \ B \\ 0 \ e, \mu \\ multi-chann \\ 0 \ e, \mu \\ multi-chann \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 \ b \\ \geq 1 \ b, \geq 2 \\ - \\ 2 \ j \ / \ 1 \ J \\ \geq 1 \ b, \geq 2 \\ 2 \ J \\ \text{rel} \\ \geq 1 \ b, \geq 2 \\ \text{rel} \\ 1 \ J \end{array}$	– – Yes Yes Yes J	139 36.1 139 139 36.1 139 139 36.1 139 36.1 139 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass V' mass W' mass V' mass V' mass W' mass W' mass	5.1 2.42 TeV 2.1 TeV 4.1 Te 3.7 TeV 4.3 Te 3.8 TeV 2.93 TeV 3.2 TeV 3.2 TeV 5.0	TeV / 6.0 TeV V TeV	F/m = 1.2% $g_V = 3$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 1801.06992 2004.14636 1906.08589 1712.06518 CERN-EP-2020-073 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	 ≥1 <i>e</i> ,μ	2 j ≥1 b, ≥1 j	– – Yes	37.0 139 36.1	Λ Λ Λ	2.57 TeV		21.8 TeV η_{LL} 35.8 TeV η_{LL} $ C_{4t} = 4\pi$	1703.09127 CERN-EP-2020-066 1811.02305
MQ	Axial-vector mediator (Dirac D Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac D	M) 0 e, μ c DM) 0 e, μ 0 e, μ M) 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, 0\text{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M. 700 G m _{\$\$}	1 55 TeV .67 TeV eV 3.4 TeV		$\begin{array}{l} g_{q}{=}0.25, \ g_{\chi}{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass	1. TeV 1 56 TeV 1.03 TeV 970 GeV		$\begin{split} \beta &= 1\\ \beta &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	multi-chann multi-chann X $2(SS)/\geq 3 e$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$		Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass 690 G	1.3 TeV 1.34 TeV 64 TeV 1.85 TeV 1.21 T V		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2j 1j 1b,1j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass l* mass v* mass	5. 2.6 TeV 3.0 TeV 1.6 TeV	6.7 TeV 3 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	$ \begin{array}{r} 1 e, \mu \\ 2 \mu \\ 2,3,4 e, \mu (S \\ 3 e, \mu, \tau \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \geq 2j $ $ 2j $ $ S) - $ $ - $ $ - $ $ - $ $ - $ $ - $	Yes 	79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass 560 GeV N _R mass 87 H ^{±±} mass 87 H ^{±±} mass 400 GeV multi-charged particle mass monopole mass	3.2 TeV 70 GeV 1.22 TeV 2.37 TeV		$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ \text{DY production}, q = 5e \\ \text{DY production}, g = 1g_D, \text{spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	vs = 8 IeV	partial data	full d	ata		10^{-1} 1 Te	V I 10 '	TeV ¹	Mass scale [TeV]	

What is experiment telling us?

Footprints of NP in low-energy data?

Javier Fuentes-Martin | New Physics from B Decays

The search for Terra Incognita

Particle Physics has entered an age of exploration

The SM Lagrangian: Naturalness problems

Multi-scale solution of the flavor puzzle/problem

A closer look to the data and EFT analysis

The B anomalies

Hints of Lepton Flavour Universality Violation (LFUV) in semileptonic B decays

The $b \rightarrow s\mu^+\mu^-$ anomalies

Several LHCb measurements deviate from SM predictions^{*} by 2-3 σ :

- ► Angular observables in $B \to K^* \mu^+ \mu^-$ [LHCb, <u>2003.04831</u>, <u>2012.13241</u>]
- ► Branching ratios $B \to K^{(*)}\mu^+\mu^-$ and $B_s \to \phi\mu^+\mu^-$ [LHCb, <u>1403.8044</u>, <u>1506.08777</u>, <u>2105.14007</u>]

*: based on hadronic assumptions on which there is no theory consensus

The $b \rightarrow s \ell^+ \ell^-$ anomalies

Lepton flavor universality ratios also show deviations from SM prediction [Theoretically "very clean": 1% theory error (QED and lepton mass effects)]

Deviations in other LFUV ratios $(R_{pK}, R_{K^{*+}}, R_{K^0})$ (with larger errors) [LHCb, <u>2110.09501,1912.08139</u>]

The $b \to s \ell^+ \ell^-$ anomalies *: with *new* $\mathscr{B}_{B_s \to \mu^+ \mu^-}$ from [CMS PAS BPH-21-006]

Conservative fit using "th clean observables" only * $\left[\Delta C_i^{\mu} = C_i^{\mu} - C_i^{e}\right]$

[Update from Cornella, JF et al., 2103.16558]

$$\mathscr{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{\alpha}{4\pi} \sum_i C_i \mathcal{O}_i$$

$$\mathcal{O}_{9}^{\mu} = (\bar{s}_{L} \gamma_{\mu} b_{L})(\bar{\mu} \gamma^{\mu} \mu) \qquad C_{9}^{\text{SM}} \approx 4.1$$
$$\mathcal{O}_{10}^{\mu} = (\bar{s}_{L} \gamma_{\mu} b_{L})(\bar{\mu} \gamma^{\mu} \gamma_{5} \mu) \qquad C_{10}^{\text{SM}} \approx -4.2$$

Left-handed new physics [$\Delta C_{9}^{\mu} = -\Delta C_{10}^{\mu}$] preferred over the SM by 3.9σ

[Consistent with $b \rightarrow s\mu^+\mu^-$ deviations ...considerably increasing NP significancy] [See e.g. Algueró et al., <u>1903.09578</u>]

The $b \rightarrow c \tau \bar{\nu}$ anomalies

- $\blacktriangleright \sim 15~\%$ enhancement due to excess in tau mode
- ► Theoretically clean: QCD uncertainties cancel (to a large extent) in the ratios
- Measurements by Babar, Belle, LHCb in reasonable agreement
- ► 3.2σ tension (R_D and R_{D^*} combined)

The $b \rightarrow c \tau \bar{\nu}$ anomalies

- $\blacktriangleright \sim 15~\%$ enhancement due to excess in tau mode
- Theoretically clean: QCD uncertainties cancel (to a large extent) in the ratios
- Measurements by Babar, Belle, LHCb in reasonable agreement
- ► 3.2σ tension (R_D and R_{D^*} combined)
- ► Recent measurement of $R(\Lambda_c)$ [$\Lambda_b \rightarrow \Lambda_c \ell \nu$] reduces the tension slightly [LHCb, <u>2201.03497</u>]

Consistency with a multi-scale picture?

The only source of **lepton flavor universality violation** in the SM (Yukawas) follows a very similar trend: $y_e \ll y_\mu \ll y_\tau$

Consistency with a multi-scale picture?

The only source of **lepton flavor universality violation** in the SM (Yukawas) follows a very similar trend: $y_e \ll y_\mu \ll y_\tau$

Data consistent with **TeV-scale NP** with a Yukawa-like scaling with $|V_q|$, $|V_{\ell}| \sim 0.1$ [roughly the size inferred from the SM Yukawa $|V_q| \sim V_{cb} \approx 0.04$]

[JF, Isidori, Pagès, Yamamoto, 1909.02519]

From EFT solutions to simplified BSM models

The main suspects

Leptoquarks (both scalars and vectors) have two important advantages:

2.

Direct searches: t-channel versus resonant s-channel production

	Model	<i>R</i> _{<i>K</i>^(*)}	R _{D(*)}	$R_{K^{(*)}} \& R_{D^{(*)}}$
	$S_1 = (3, 1)_{-1/3}$	×	✓	×
alars	$R_2 = (3, 2)_{7/6}$	×	\checkmark	×
SC	$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	×
	$S_3 = (3, 3)_{-1/3}$	\checkmark	×	×
ctor	$U_1 = (3, 1)_{2/3}$	\checkmark	\checkmark	\checkmark
Ve	$U_3 = (3, 3)_{2/3}$	\checkmark	×	×

[Angelescu, Bečirević, Faroughy, Sumensary, 1808.08179]

Three viable options in the market:

★ U_1 + UV completion

[di Luzio, Greljo, Nardecchia <u>1708.08450;</u> Calibbi, Crivellin, Li <u>1709.00692;</u> Bordone, Cornella, JF, Isidori <u>1712.01368;</u> Barbieri, Tesi, <u>1712.06844</u>...]

$\star S_1 + S_3$

[Crivellin, Muller, Ota <u>1703.09226;</u> Buttazzo et al. <u>1706.07808;</u> Marzocca <u>1803.10972,...]</u>

 $\star S_3 + R_2$

[Bečirević et al., 1806.05689]

The U_1 vector leptoquark

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_L^{i\alpha} (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) + \beta_R^{i\alpha} (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \text{h.c.} \qquad U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

It provides a good description of all low-energy data with a "natural" flavor structure

Javier Fuentes-Martin | New Physics from B Decays

 $\tau - \mu$ Lepton Flavor Violation

LHCb & Belle II essential to confirm/exclude the new physics solution in a large class of correlated observables

 10^{-6} 2.4Excluded at 95% CL 10^{-7} $\frac{WS}{MN} \frac{2.2}{MN} + \frac{2.0}{MN} \frac{1.8}{MN} + \frac{1.8}{MN} \frac{1.6}{MN} + \frac{1.4}{MN} + \frac{1.2}{MN} + \frac{1.2}{MN} \frac{1.6}{MN} + \frac{1.2}{MN} + \frac{1.2}{MN} \frac{1.6}{MN} + \frac{1.2}{MN} + \frac$ w/o RH current 10^{-8} $\mathcal{B}(au o \mu \phi)$ Belle II (50 ab^{-1}) 10^{-9} 10^{-10} LHCb (300 fb^{-1}) with RH current 10^{-11} 10^{-12} 10^{-6} 10^{-5} 0.8∟ 1.0 10^{-7} 10^{-4} 10^{-3} 10^{-8} 1.21.61.8 2.01.4 $\mathcal{B}(B_s \to \tau^- \mu^+)$ M_L [TeV]

 $b \rightarrow s\nu_{(\tau)}\bar{\nu}_{(\tau)}$ (loop-level for U_1 model) [$b \rightarrow s\tau^+\tau^-$ also key (see backup)]

Javier Fuentes-Martin | New Physics from B Decays

 $\tau - \mu$ Lepton Flavor Violation

LHCb & Belle II essential to confirm/exclude the new physics solution in a large class of correlated observables

 $b \rightarrow s\nu_{(\tau)}\bar{\nu}_{(\tau)}$ (loop-level for U_1 model) [$b \rightarrow s\tau^+\tau^-$ also key (see backup)]

17

A glimpse into possible UV completions

Gauge UV completion for the U_1 leptoquark

 $U_1 \sim (3,1,2/3) \longrightarrow SU(4) \longrightarrow PS = SU(4) \times SU(2)_L \times SU(2)_R$

✓ SU(4) is the smallest group containing the $U_1 \sim (3, 1, 2/3)$

 \checkmark No proton decay (accidental baryon number symmetry like in the SM)

- **×** Flavor-blind U_1 mediates $K_L → µe \Rightarrow m_{U_1} \gtrsim 100 \,\text{TeV}$
- \mathbf{X} Extra fermions can make the U_1 non-universal, but not the Z'
- X Strongly coupled, universal Z' would be excessively produced at the LHC

4321 model(s) [Georgi and Y. Nakai, <u>1606.05865</u>; Diaz, Schmaltz, Zhong, <u>1706.05033</u>; Di Luzio, Greljo, Nardecchia, <u>1708.08450</u>; Bordone, Cornella, JF, Isidori <u>1712.01368</u>]

We can "protect" the light families by de-correlating SU(4) from the SM color group $(g_4 \gg g_3)$

Third-family quark lepton unification at the TeV scale

 $U(1)_{Y}$ $\frac{|}{SU(4)_h} \times SU(3)_l \times SU(2)_L \times U(1)_{R+l} \xrightarrow{\langle \Omega_{1,3,15} \rangle \sim \mathcal{O}(\text{TeV})} SU(3)_c \times SU(2)_L \times U(1)_Y$ $+ U_1, G', Z'$ $SU(3)_{c}$ i = 1,2

Third-family quark-lepton unification at the TeV $\psi_{L,R} = \begin{bmatrix} q_{L,R}^1 & q_{L,R}^2 & q_{L,R}^3 & l_{L,R} \end{bmatrix}$

 \star Direct new physics couplings to 3rd family only [as in the multi-scale picture]

 \star CKM mixing and NP couplings to light families via (small) mixing with vectorlike fermions χ

]	$U(1)_X$	$SU(2)_L$	SU(3)'	SU(4)	Field
	1/6	2	3	1	$q_L^i <$
1st & 2nd	2/3	1	3	1	u^i_R
families	-1/3	1	3	1	d_R^i
	-1/2	2	1	1	ℓ_L^i
	-1	1	1	1	e^i_R
3rd family	0	2	1	4	ψ_L
	$\pm 1/2$	1	1	4	ψ^\pm_R
vectorlike	0	2	1	4	χ^i_L
fermions	0	2	1	4	χ^i_R
	1/2	2	1	1	H
4321	-1/2	1	1	$\overline{4}$	Ω_1
breaking	1/6	1	3	$\overline{4}$	Ω_3
scalars	0	1	1	15	Ω_{15}

[Bordone, Cornella, JF, Isidori <u>1712.01368</u>, <u>1805.09328</u>; Greljo, Stefanek, 1802.04274; Cornella, JF, Isidori <u>1903.11517</u>]

High- p_T predictions: vector-like leptons at high- p_T

Some (important) effects appear only at one loop $\chi_{L,R} = (Q L)^T$

 $Q \sim (\mathbf{3}, \mathbf{2}, 1/6)$ $Q = \begin{pmatrix} U \\ D \end{pmatrix}$

 $L \sim (\mathbf{1}, \mathbf{2}, -1/2)$ $L = \binom{N}{E}$

 $b \xrightarrow{E} U_1 \xrightarrow{S} V_1 \xrightarrow{V_1} \Delta R_{D^*}^2 M_L^2 \Longrightarrow M_L \lesssim \text{TeV}$

Analogously to the charm quark in the SM [vectorlike leptons within the LHC reach!]

[di Luzio, JF, et al <u>1808.00942;</u> Cornella, JF, Isidori <u>1903.11517;</u> JF et al., <u>2009.11296</u>]

Electroweak (or Z') produced. Dominant decay to three 3rd generation SM fermions!

Exciting results for 4321 models from CMS

[See talk by Sabino Meola]

[Faroughy, Greljo, Kamenik, <u>1609.07138</u>]

[No excess in ATLAS data (no dedicated search)]

[Di Luzio, JF, Greljo, Nardecchia, Renner, 1708.08450]

[ATLAS search currently ongoing]

Back to the multi-scale picture

Javier Fuentes-Martín | New Physics from B Decays

Cosmological signatures in multi-scale picture

Conclusions

In combination, $b \to s\ell^+\ell^-$ and $b \to c\tau^-\bar{\nu}$ anomalies point to TeV-scale new physics with a flavor structure similar to that of the SM Yukawas

New physics solution consistent with low- & high-energy data, but new physics effects should emerge soon in multiple observables

Plenty of upcoming measurements from both the energy and intensity frontiers [e.g. part of LHC run II data still to be analyzed and Belle II data coming soon]

Thank you!

Anatomy of $b \to s \ell^+ \ell^-$ decays

Anatomy of $b \to s \ell^+ \ell^-$ decays

Short-distance

(semileptonic int.)

"Easy" to compute

Long-distance (four-quark int.)

Difficult to estimate

Induces a vectorial and lepton-universal contribution

 $\mathcal{O}_{9}^{\ell} = (\bar{s}_{L} \gamma_{\mu} b_{L})(\bar{\ell} \gamma^{\mu} \ell)$

 \star Long-distance effects cannot induce:

- Breaking of lepton universality
- Axial-current contributions (no effect in $B_s \rightarrow \mu^+ \mu^-$)

LFV predictions in other leptoquark models

 $S_1 + S_3$ $R_2 + S_3$ $m_{R_2} = 1.3 \text{ TeV}, \ m_{S_3} = 2.0 \text{ TeV}$ Model $S_1 + S_3^{(all)}$ ${\operatorname{Br}}(B^+ o K^+ \ au \ au)/{\operatorname{Br}}(B^+ o K^+ \ au \ au)_{\operatorname{SM}}$ 600 ${\rm Br}(B\to K\mu\tau)\times 10^7$ 400 2 200 0 30 10 20 40 0 0.4 0.6 0.8 0.2 Br(B \rightarrow K $\tau \mu$) x 10⁶ $Br(\tau \to \mu \gamma) \times 10^7$

[Bečirević et al., 2206.09717]

[Gherardi, Marzocca, Venturini, 2008.09548]

Corroborating the U_1 hypothesis: $b \rightarrow s \tau^+ \tau^-$

[Cornella, JF et al., 2103.16558]

N.B:
$$\delta R_{D^*} = \frac{R_{D^*} - R_{D^*}^{SM}}{R_{D^*}^{SM}}$$

U_1 searches at LHC

 U_1 leptoquark solution also consistent with high- p_T data and within the HL-LHC reach! [Expected enhancement of high- $p_T \tau^+ \tau^-$ pairs in Drell-Yan data]

[Cornella, JF et al., <u>2103.16558</u>]

 $[pp \rightarrow \tau \tau \text{ for } U_1 \text{ originally proposed in} Faroughy, Greljo, Kamenik, 1609.07138]$

Javier Fuentes-Martin | New Physics from B Decays

Coloron direct searches at the LHC

Relevant collider signatures for G'("coloron" = heavy color-octet vector)

Strongest constraint on the model scale from $pp \rightarrow \bar{t}t$

[Cornella, JF et al., 2103.16558]

Flavor in Randall-Sundrum

Warped 5D geometry (RS): $ds^2 = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2$

- Justification of the Yukawa hierarchies through exponentiation + flavor anarchy
- Analogous to anarchic partial compositeness in composite models

A 5D UV completion of 4321

Attempt to construct a full theory of flavor by embedding the 4321 group in a compact warped extra dimension (AdS_5) with multiple four-dimensional branes

Flavor ↔ fermion (quasi-)localization in each of the branes [Dvali, Shifman, <u>'00</u>; Panico, Pomarol, <u>1603.06609</u>]

$$y_{ij} \approx y_t e^{-k(L-\ell_j)} e^{-k(c_i-1/2)(y_i-\ell_j)}$$

Same dynamics that breaks 4321 also generates a pNGB Higgs \leftrightarrow stabilization of the EW hierarchy with an $\mathcal{O}(0.1\%)$ tuning (little hierarchy)

Anarchic neutrino masses via inverse see-saw mechanism

Hunting 4321 vectorlike fermions at high- p_T

New search for pair produced heavy lepton doublet decaying into 3rd generation fermions

[K. Cormier, Darius Faroughy, JFM, V. Mikuni, w.i.p]

Third-family quark-lepton unification at the TeV scale

In first approximation, third-family quark-lepton unification implies

$$[y_{\tau} = 0.8 y_b \text{ at } 2 \text{ TeV}]$$

TeV-scale unification limits Majorana mass for ν_R to $m_{\nu_R} \lesssim {\rm TeV}$

Type-I see-saw:
$$m_{\nu} \approx \frac{m_D^2}{m_{\nu_R}} \sim 10 \text{ GeV}$$

 $m_D \equiv y_{\nu} v / \sqrt{2}$

Solution: Inverse seesaw via new fermion singlets S_L^i with hierarchical Majorana masses μ^i

[Greljo, Stefanek, <u>1802.04274</u> Fileviez, Wise, <u>1307.6213</u>]

 $\mu^i \sim (10^7, 10^{-1}, 10^{-9}) \text{ GeV}$

$$m_{\nu} \approx m_D \, m_R^{-1} \, \mu \, (m_R^{-1})^{\mathsf{T}} m_D^{\mathsf{T}}$$

$$m_D^i \approx m_u^i \sim (10^{-2}, 1, 10^2) \text{ GeV}$$

Third-family quark-lepton unification at the TeV scale

Model prediction: mixing between active neutrino and pseudo-Dirac heavy neutral leptons yields

PMNS unitarity violation

with the expected pattern:

$$\eta \equiv |1 - NN^{\dagger}| \sim \left| \frac{m_D^3}{m_R^3} \right|^2 \begin{pmatrix} \epsilon_L^4 & \epsilon_L^3 & \epsilon_L^2 \\ \epsilon_L^3 & \epsilon_L^2 & \epsilon_L \\ \epsilon_L^2 & \epsilon_L & 1 \end{pmatrix} \qquad \epsilon_L \approx 0.1$$

First sign of violation in 33 entry: η_{33}

n 33 entry:
$$\eta_{33} \approx \left| \frac{m_D^3}{m_R^3} \right|^2 \sim \left| \frac{100 \text{ GeV}}{2 \text{ TeV}} \right|^2 = 2.5 \times 10^{-3}$$

$$\eta_{33}^{\exp} < 5.3 \times 10^{-3}$$
 (90 % C.L.)

[Antusch, Fischer, 1407.6607]