Search for Tribosons in ATLAS

Siyuan Sun, Ph.D. on Behalf of the ATLAS Collaboration

Why Tri-Bosons

• Direct measurement of gauge boson self-coupling and precision test of SM

- Finely balanced cancellations between QGC, TGC, Higgs amplitudes is needed to preserve unitarity at high CM energies.
- Any anomalous HVV, QGC and TGC coupling can disturb the balance and create large cross-sections at high energies.
- Complementary to vector boson scattering measurements

Summary of Triboson Measurements

- Photon have no electric charge and Z have no weak-hyper charge
- Only charged TGC and QGC are allowed in SM:
 - WWZ, WWγ
 - WWWW, WWZZ, WWZY, WW $\gamma\,\gamma$
- Prevalence of ISR and FSR photons hamper constraints on aQGC in channels with photons

Summary of Previous Triboson Measurements

- First evidence for WWW and WWZ at ATLAS in 2019
 - Partial Run 2 dataset 80 fb⁻¹
 - Observed: WVV 4.1 σ , WWW 3.2 σ
 - Physics Letter B. 2019
- First observation of VVV at CMS in 2020
 - Full Run 2 dataset 137 fb⁻¹
 - Observed: VVV 5.7 σ , WWW 3.3 σ
 - Physics Review Letters 2020

From Philip Chang

https://indico.cern.ch/event/823181/contributions/3466223/attachmen ts/1886506/3110079/PhilipChang20190725_LPCMBWorkshop.pdf

New WWW Cross-Section Measurement

- Analysis principle: Avoid opposite signed, same flavor pairs of leptons (OSSF)
 - Avoids SM processes that pair produce oppositely charged leptons

	Detector Signatures			
$W^{\pm}W^{\pm}W^{\mp} \rightarrow 2l2\nu 2j$	$e^{\pm}e^{\pm}jj + E_T^{miss}$ $e^{\pm}\mu^{\pm}jj + E_T^{miss}$ $\mu^{\pm}\mu^{\pm}jj + E_T^m$		$\mu^{\pm}\mu^{\pm}$ jj + E_T^{miss}	
$W^{\pm}W^{\pm}W^{\mp} \rightarrow 3l3\nu$	$e^{\pm}e^{\pm}\mu^{\mp} + E_T^{miss}$		μ^{\pm}	$\mu^{\pm} \mathbf{e}^{\mp} + E_T^{miss}$

- Same signed lepton pair from the two same signed W
- Two jets or a lepton of a different flavor from the third W
- Missing transverse energy from the neutrinos
- <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-039/</u>

WWW $\rightarrow \mu \nu \mu \nu j j$ Candidate

WWW $\rightarrow \mu \nu e \nu e \nu$ Candidate

WWW Simulation

• WWW Monte Carlo used for the WWW analysis are simulated to NLO accuracy in QCD and LO accuracy in EW

	Generator	Accuracy QCD	Accuracy EW
On-Shell WWW	Sherpa 2.2.2	NLO	LO
$WH \rightarrow WWW^*$	Powheg (ME) + Pythia 8 (PS)	NLO	LO

- <u>Inclusive theoretical cross-section</u> is 511 ± 42 fb calculated with NLO electroweak correction is used as the baseline theoretical cross-section
- <u>N3L0 QCD + NL0 EWK correction</u> predicts 505 fb for the total inclusive crosssection
 - $pp \to W^-W^+W^+$ 136⁺⁶₋₅ (scale) ± 4 (PDF) fb
 - $pp \to W^+W^-W^-$ 76⁺⁴₋₃ (scale) ± 2 (PDF) fb
 - $pp \rightarrow WH \rightarrow WWW^*$ 293⁺¹₋₅ (scale) ⁺⁶₋₅ (PDF) fb

Major Backgrounds

- 1. SM process that produce > 3 leptons but one is lost
 - WZ, ZZ where a lepton is not detected
 - WZ, ZZ where $Z \rightarrow \tau \tau$
- 2. Non-prompt leptons originating from hadronic jets
- 3. V γ events where the photon is misidentified as an electron
- 4. Electron charge mis-identification

estimated by normalizing MC to data Fully estimated in-situ using data

Selecting High Quality Electron/Muons

- Selection of high quality leptons is critical for minimizing the rate of background due to mis-reconstruction
- Require electron + muon objects have high reconstruction "quality"
- Require that the electron+muons are isolated from other activities in the detector
- Reject electrons who's charge may have been misidentified

https://link.springer.com/content/pdf/10.1140/epjc/s10052-019-7140-6.pdf

2l2j Signal Region Design

3l3v Signal Region

Signal Region Distributions

2l2j Signal Region

3l3v Signal Region

Background Estimation: WZ

2l2j Signal Region

3l3v Signal Region

14

WZ Control Region

WZ Monte Carlo Scale Factors

Background Estimation: Non-prompt Lepton

- Background where b-hadrons, c-hadrons decaying semi-leptonically are mis-reconstructed as prompt leptons
- $t\bar{t}$ is the main contributor to the 3l3v channel
- $t\bar{t}$ and W+b-jets are the main contributors to the 2l2j channel
- Estimated in data using control region rich in $t\bar{t}$

Control Region rich in $t\bar{t}$	Factor Derivation in Control Region		
2l2j selection + 1 b-jet	2 high quality leptons 🛛 🗲	1 lepton that fail some quality/isolation section	
3l3v selection + 1 b-jet	3 high quality leptons 🔸	1 lepton that fail some quality/isolation selection	

• Simultaneous fit to # of data events in green and yellow regions derives the factor between # of leptons that fail quality selection vs # of lepton that pass but originate from hadrons

Non-Prompt Background Estimation

Signal Region	Apply factor		
2l2j signal region selection	2 high quality leptons		
3l3v signal region selection	3 high quality leptons		

• Applying the derived factor to the data events in yellow predicts the # of events in green

Photon Mis-ID Background Estimation

- Estimated in region rich in $Z\gamma$ events where the photon originates from FSR $Z \rightarrow ll\gamma$
- Photons can convert to electrons through scattering off of detector material
- "electrons" without a hit on the inner most tracker layer are more likely to be mis-identified photons

	Factor Derivation in Control Region		
Control Region rich in $Z\gamma$	All high quality leptons 🔸	1 electron don't have hit in the inner most layer of the tracker	

• Simultaneous fit to # of data events in green and yellow regions derives the factor between electrons that fail quality selection vs # of electrons that pass but are actually mis-identified photons

Photon Mis-ID Background Estimation

Signal Region	Apply	factor
2l2j signal region selection	2 high quality leptons 🛛 🗲	1 electron don't have hit in the inner most layer of the tracker
3l3v signal region selection	3 high quality leptons 🛛 🗲	1 electron don't have hit in the inner most layer of the tracker

• Applying the derived factor to the data events in yellow predicts the # of events in green due to photon mis-identification

Electron Charge-Flip Background Estimation

- Electron charge can be mis-reconstructed for example when electron path is changed due to bremsstrahlung
- Estimated in region rich in $Z \rightarrow$ ee events

	Factor Derivation in Control Region		
Control Region rich in $Z \rightarrow ee$	Same-signed ee	Opposite signed electrons	

• Simultaneous fit to # of data events in green and yellow regions derives the factor between electrons that fail quality selection vs # of electrons that pass but are actually mis-identified photons

Electron Charge-Flip Background Estimation

Signal Region	Apply factor		
2l2j signal region selection	2 same signed leptons		
3l3v signal region selection	No opposite signed, same flavor lepton pairs Opposite signed electron		

• Applying the derived factor to the data events in yellow predicts the # of events in green due to electron charge flip

Signal Region Yields

	$e^{\pm} e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	3ℓ
WWW	29.3 ± 4.4	128 ± 19	84 ± 12	35.8 ± 5.2
WZ	80.6 ± 5.7	344 ± 22	171 ± 10	16.4 ± 1.4
Charge-flip	30.3 ± 7.2	18.8 ± 4.5	—	1.7 ± 0.4
γ conversions	62.1 ± 8.7	142 ± 15	—	1.5 ± 0.1
Non-prompt	16.6 ± 4.1	138 ± 24	98 ± 21	26.3 ± 2.9
Other	22.8 ± 3.7	102 ± 15	59.7 ± 9.0	8.0 ± 0.9
Total predicted	242 ± 11	872 ± 22	414 ± 17	89.7 ± 5.4
Data	242	885	418	79

Boosted Decision Tree

- We apply a boosted decision tree to the signal regions to further separate signal from background
- Two BDTs are trained for the 2l2j and 3l3v signal regions
- We used the package XGBoost:
 - <u>https://dl.acm.org/doi/pdf/10.1145/2939672.2939785</u>

Ensemble of Decision Trees

An ensemble of individual weak classifiers can make a strong classifier*

Siyuan Sun, MBI 2021

Tree Optimization

- Algorithmically pick the best variables to "split" on and use gradient decent to find the most optimal value to cut.
- The BDT is optimized to minimize the "loss"

$$\mathcal{L}(\phi) = \sum_{i} l(\hat{y}_{i}, y_{i}) + \sum_{k} \Omega(f_{k}) \text{ where } \Omega(f) = \gamma T + \frac{1}{2} \lambda ||w||^{2}$$
 extreme weights
Sum of loss over i events Sum of loss over k trees Penalty for k-th tree's complexity

of leaves

Avoid single

Boosted Decision Tree Variables

- Input variables are chosen for their feature importance and lack of correlation with other variables
- Importance = increase in purity caused by splitting on that variable
- More important variables are listed first

2ℓ	3ℓ
$\left m_{jj}-m_{W} ight $	$E_{\rm T}^{\rm miss}$ significance $\times 10/E_{\rm T}^{\rm miss}$
p_{T} (forward jet)	$p_T(\ell_2)$
$E_{\rm T}^{\rm miss}$ significance	$N(ext{jets})$
$p_T(j_2)$	same flavor $m_{\ell\ell}$
minimum $m(\ell, j)$	$m_T(\ell\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}})$
$m(\ell_2, j_1)$	$m(\ell_2,\ell_3)$
$N({ m jets})$	$\Delta \phi(\ell\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}})$
p_{T} (ℓ_2)	minimum $\Delta R(\ell, \ell)$
$m_{\ell\ell}$	$p_{\rm T} (\ell_3)$
$ \eta(\ell_1) $	$m_T(\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$
N(leptons in jets $)$	$E_{\rm T}^{\rm miss}$ significance
$m(\ell_1, j_1)$	

Distributions of BDT Input Variables

BDT Distribution in Signal Region

BDT Distribution in Signal Region

Fitting and Signal Strength Extraction

Fitted Regions	Fitted Distributon	N _{bins}
$e^{\pm}e^{\pm}jj$ signal region	BDT	10
$e^{\pm}\mu^{\pm}$ jj signal region	BDT	10
$\mu^{\pm}\mu^{\pm}$ jj signal region	BDT	10
3l3v signal region	BDT	5
WZ 0 jet control region	m _{lll}	5
WZ 1 jet control region	m _{lll}	5
WZ 2 jet control region	m _{lll}	5

• Signal strength is extracted by simultaneous binned log-likelihood fitting of all signal regions and the WZ control regions

Signal and Control Region Yields

Much higher statistics in WZ control region serves to constrain the WZ rate in the signal region

Observed Signal Strength

Fit	Observed (expected) significances $[\sigma]$	$\mu(WWW)$
$e^{\pm}e^{\pm}$	2.3(1.4)	1.69 ± 0.79
$e^{\pm}\mu^{\pm}$	4.6(3.1)	1.57 ± 0.40
$\mu^{\pm}\mu^{\pm}$	5.6(2.8)	2.13 ± 0.47
2ℓ	6.9(4.1)	1.80 ± 0.33
3ℓ	4.8(3.7)	1.33 ± 0.39
Combined	8.2(5.4)	1.66 ± 0.28

The inclusive WWW production cross section is measured to be $850 \pm 100 \text{ (stat.)} \pm 80 \text{ (syst.)} \text{ fb}$ Standard model predicts $511 \pm 42 \text{ fb}$

Systematic Uncertainties

Uncertainty source	$\Delta\sigma/\sigma$ [%]
Data-driven background	5.3
Prompt-lepton-background modeling	3.3
Jets and $E_{\rm T}^{\rm miss}$	2.8
MC statistics	2.8
Lepton	2.1
Luminosity	1.9
Signal modeling	1.5
Pile-up modeling	0.9
Total systematic uncertainty	9.5
Data statistics	11.2
WZ normalizations	3.3
Total statistical uncertainty	11.6

Comparison with Previous WWW Results

Analysis	$\mid \mu$	σ [pb]	Reference
ATLAS @ 139fb ⁻¹	1.66 ± 0.28	0.85 ± 0.13	<u>CDS</u>
ATLAS @ 80fb $^{-1}$	1.29 ± 0.44	0.65 ± 0.22	Physics Let. B. 2019
CMS @ 137fb $^{-1}$	1.15 ± 0.45	0.59 ± 0.22	<u>Physics Rev. L. 2020</u>

Cross-Checks Performed

- Signal region was originally blinded.
- All BDT bins with signal/bkg > 0.05 are blinded
- Background normalization was check in the W-mass side band region before unblinding
- BDT shape was checked in all background control regions and validation region before unblinding
- we measured the signal strengths for $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$ and $3l_{3\nu}$ SR separately;
- we divided events into three independent data-taking periods;
- we performed 80 fb⁻¹ measurement using BDT and compared to the evidence paper results without BDT;
- we performed measurements with cut-based analysis
- all results were found to be consistent with each other.

Summary

- ATLAS and CMS are entering into a new era in the direct measurements of tribosons.
- This is a vital step in constraining aQGCs and search for BSM physics
- Deep dive into the resent first observation of inclusive WWW production at ATLAS
 - Observed cross-section: 850 ± 100 (stat.) ± 80 (syst.) fb
 - Observed signal strength: $\mu = 1.66 \pm 0.28$
 - Observed significance: 8.2 standard deviations
 - Expected significance: 5.4 standard deviations

ATLAS Detector and Data

139 fb⁻¹ ATLAS Analysis

2l2v2j Signal Region		
e [±] e [±]	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
No SFOS pairs	, no 3 rd leptor	1
Leading leptor	n pT > 27 GeV	I
$40 < m_{ll} <$	< 400 GeV	
$m_{ee}^{} < 80 { m GeV} \mid \mid 100 \; { m GeV} < m_{ee}^{}$		
\geq 2 jets, m_{jj} < 16	0 GeV, $ \Delta\eta_{jj} <$: 1.5
no b qu	ıark jet	
E_T^{miss} significance > 3		

80 fb⁻¹ ATLAS Analysis

$\ell^{\pm} v \ell^{\pm} v j j$ Signal Region		
$e^{\pm}e^{\pm}$ channel	$e^{\pm}\mu^{\pm}$ channel	$\mu^{\pm}\mu^{\pm}$ channel
Two same-sign lepte	ons with $p_T > (2)$	20) 27 GeV
3^{rd}	lepton veto	
\geq 2 jets with $p_T >$ (20) 30 GeV and $ \eta < 2.5$		
<i>b</i> -jet veto		
$40 < m_{\ell\ell} < 80 \text{ GeV}$	$10 < m_{co}$	< 400 GeV
$100 < m_{\ell\ell} < 400 {\rm GeV}$	$40 < m_{\ell\ell}$	< 400 000
$ \Delta \eta_{jj} < 1.5$		
$m_{jj} < 300 \text{ GeV}$		
$E_T^{miss} > 55 \text{ GeV}$ None		one

139 fb⁻¹ ATLAS

80 fb⁻¹ ATLAS

80 fb⁻¹ vs 139 fb⁻¹

	$e^{\pm} e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	3ℓ
WWW	29.3 ± 4.4	128 ± 19	84 ± 12	35.8 ± 5.2
WZ	80.6 ± 5.7	344 ± 22	171 ± 10	16.4 ± 1.4
Charge-flip	30.3 ± 7.2	18.8 ± 4.5	—	1.7 ± 0.4
γ conversions	62.1 ± 8.7	142 ± 15	—	1.5 ± 0.1
Non-prompt	16.6 ± 4.1	138 ± 24	98 ± 21	26.3 ± 2.9
Other	22.8 ± 3.7	102 ± 15	59.7 ± 9.0	8.0 ± 0.9
Total predicted	242 ± 11	872 ± 22	414 ± 17	89.7 ± 5.4
Data	242	885	418	79

139 fb⁻¹ ATLAS

Table 2

Post-fit background, signal and observed yields for the $\ell \nu \ell \nu q q$ and $\ell \nu \ell \nu \ell \nu$ channels. Uncertainties in the predictions include both statistical and systematic uncertainties added in quadrature; correlations among systematic uncertainties are taken into account in the calculation of the total.

	ee	$e\mu$	μe	$\mu\mu$	μ ee + e $\mu\mu$
WWW	9.9 ± 3.3	26 ± 9	23 ± 8	30 ± 10	15 ± 5
WZ	37.4 ± 2.2	121 ± 6	96 ± 5	119 ± 6	8.6 ± 0.5
ZZ	0.46 ± 0.05	5.11 ± 0.25	3.44 ± 0.18	4.12 ± 0.24	0.69 ± 0.03
Non-prompt	6.1 ± 3.0	35 ± 5	17 ± 9	37 ± 7	9.4 ± 1.5
γ conv.	20.9 ± 1.9	35.0 ± 3.1	76 ± 7	-	1.06 ± 0.11
Other	12.9 ± 1.0	25.7 ± 1.7	20.3 ± 1.3	25.3 ± 1.6	3.5 ± 0.4
Total	88 ± 4	249 ± 9	237 ± 10	216 ± 9	38 ± 4
Data	87	239	235	237	27

80 fb⁻¹ ATLAS

Ensure High Quality Muons

Signal Muon Selection
pT > 20 GeV
$ \eta < 2.5$
"Medium" muon quality ^[1]
Longitudinal impact parameter $ z_0 \times \sin \theta < 0.5 \text{ mm}$
Transverse impact parameter: $\left \frac{d_0}{\sigma_{d_0}}\right < 3$
Reject muons suspected to originate from hadrons ^[2]

[1] Muon Quality: <u>https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-016-4120-y</u>
[2] Non-prompt lepton BDT: <u>https://journals.aps.org/prd/pdf/10.1103/PhysRevD.97.072003</u>

Ensure High Quality Electrons

Signal Electron Selection	
pT > 20 GeV	
$ \eta < 2.47$ but not in crack region $1.37 < \eta < 1.52$	
Tight Likelihood ^[1]	
Longitudinal impact parameter $ z_0 \times \sin \theta < 0.5 \text{ mm}$	
Transverse impact parameter: $\left \frac{d_0}{\sigma_{d_0}}\right < 5$	
Reject electrons suspected to originate from hadrons ^[2]	
Reject electrons with suspected mis-measured charge ^[3]	

[1] Electron quality: <u>https://doi.org/10.1088/1748-0221/14/12/P12006</u>

[2] Non-prompt lepton BDT: <u>https://journals.aps.org/prd/pdf/10.1103/PhysRevD.97.072003</u>

[3] charge mis-id tagger: <u>https://doi.org/10.1140/epjc/s10052-019-7140-6</u>

Anti-ID Muon

Signal Muon Selection	"Anti-ID" Muon Selection
pT > 20 GeV	pT > 20 GeV
η < 2.5	$ \eta < 2.5$
High quality reconstructed tracks in most regions + Segment/calorimeter tagged muons in regions with limited detector coverage	High quality reconstructed tracks in most regions + Segment/calorimeter tagged muons in regions with limited detector coverage
Longitudinal impact parameter $ z_0 \times \sin \theta < 0.5$ mm	Longitudinal impact parameter $ z_0 \times \sin \theta < 0.5$ mm
Transverse impact parameter: $\left \frac{d_0}{\sigma_{d_0}}\right < 3$	Transverse impact parameter: $\left \frac{d_0}{\sigma_{d_0}}\right < 10$
Reject muons suspected to originate from hadrons	Do not reject muons suspected to originate from hadrons Must not pass signal muon selection

Anti-ID Electron

Signal Electron Selection	"Anti-ID" Electron Selection
pT > 20 GeV	pT > 20 GeV
$ \eta < 2.47$ but not in crack region $1.37 < \eta < 1.52$	$ \eta < 2.47$ but not in crack region $1.37 < \eta < 1.52$
Tight Likelihood	Medium Likelihood
Longitudinal impact parameter $ z_0 \times \sin \theta < 0.5$ mm	Longitudinal impact parameter $ z_0 \times \sin \theta < 0.5$ mm
Transverse impact parameter: $\left \frac{d_0}{\sigma_{d_0}}\right < 5$	Transverse impact parameter: $\left \frac{d_0}{\sigma_{d_0}}\right < 5$
Reject electrons suspected to originate from hadrons	Do not reject electrons suspected to originate from hadrons
Reject electrons with suspected mis-measured charge	Do not reject electrons with suspected mis-measured charge

Non-Prompt Enriched Region

Derive non-prompt factor by performing simultaneous fits to the data in the Signal lepton+antiID lepton and all signal lepton control regions

Non-Prompt Enriched Region

Apply non-prompt factor to amount of data observed in the antiID region to predict number expected in the signal region

Siyuan Sun, MBI 2021

Background Estimation: Photon Misidentification

- $V\gamma$ + jets events where the photon is mis-identified as an electron
- Photons can convert to electrons through scattering off of detector material

Signal Electron
pT > 20 GeV
$ \eta < 2.47$ && not in crack: $1.37 \le \eta \le 1.52$
Tight Likelihood
Transverse impact parameter $\left \frac{d_0}{\sigma_d}\right < 5$
Longitudinal impact par. $ z0 \times \sin \theta < 0.5 \text{ mm}$
Reject electrons suspected to originate from hadrons
Reject electrons with suspected mis-measured charge

"Photon-like" Electron

pT > 20 GeV

 $|\eta| < 2.47$ && not in crack: $1.37 \leq |\eta| \leq 1.52$

Tight Likelihood except no inner most tracker layer hit

Transverse impact parameter $\left|\frac{d_0}{\sigma_{d_0}}\right| < 5$ Longitudinal impact par. $|z0| \times \sin \theta| < 0.5$ mm

Reject electrons suspected to originate from hadrons

Reject electrons with suspected mis-measured charge

Predicting Photon Misidentification Rate

Zγ Control Region	3l3v Signal Region
$e^\pm e^\mp$ or $\mu^\pm \mu^\mp$ opposite signed pair	eeμ or eμμ
one additional electron	No SFOS pairs
Leading lepton pT > 27 GeV	No 4 th lepton
No b-quark jets	Leading lepton pT > 27 GeV
$80 < m_{lll} < 100 \; { m GeV}$	Sum of lepton charge = $1 (++ - or +)$
	no b-jets

Background Estimation: Electron Charge flip

Charge flip control region		3l3v Signal Region	
ee		eeµ	
No 3 rd lepton		No SFOS pairs	
Leading lepton pT > 27 GeV		No 4 th lepton	
$75 < m_{ee} < 105 \; { m GeV}$		Leading lepton pT > 27 GeV	
		Sum of lepton charge = $1 (++ - or +)$	
		no b-jets	
Same signed electrons	Opposite signed electrons	Same signed electrons	Opposite signed electrons
Derive charge flip rate		Apply charge flip rate Similarly for 2l2j signal regions*	