Multi-Boson Interaction (MBI) 2021

EWK single and diboson production and aGCs of massive vector bosons

Geetanjali Chaudhary

Panjab University, INDIA for the CMS & ATLAS Collaboration August 25, 2021

	CMS	ATL	AS	
Z+2jets	$W^{\pm}W^{\pm}$ WZ WV ZZ	Z+2jets W	$^{\pm}W^{\pm}WZV$	V ZZ
2016	• Full Run II	Full Run II	2015+2016	Full Run II

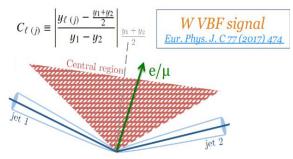
CMS ANALYSES

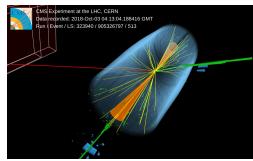
- **VBF** Z+ two jets (EPJC 78 (2018) 589) Electroweak production of two jets in association with a Z boson in proton–proton collisions at $\sqrt{s} = 13$ TeV
- VBS W[±]W[±]WZ (PLB 809(2020) 135710) Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV
- **VBS WV** (CMS-PAS-SMP-20-013) Search for vector boson scattering at the LHC Run 2 with CMS data in the semi-leptonic lvqq final state
- VBS ZZ (PLB 812 (2020) 135992) Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV

ATLAS ANALYSES

- VBF Z+ two jets (Eur. Phys. J. C 81 (2021) 163) Differential cross-section measurements for the electroweak production of dijets in association withaZboson in proton-proton collisions at ATLAS
- **VBS W[±]W[±]** (Phys. Rev. Lett. 123 (2019) 161801) Observation of electroweak production of a same-sign W boson pair in association with two jets in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector
- VBS WZ (Phys. Lett. B 793 (2019) 469) Observation of electroweak $W^{\pm}Z$ boson pair production in association with two jets in *pp* collisions at $\sqrt{s}=13$ TeV with the ATLAS detector
- VBS VV (Phys. Rev. D 100, 032007 (2019)) Search for electroweak diboson production in association with a high-mass dijet system in semileptonic final states in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector
- **VBS ZZ** (2004.10612) Observation of electroweak production of two jets and a Z-boson pair with the ATLAS detector at the LHC

A big thanks to Guillelmo(CMS) and Monica(ATLAS)!

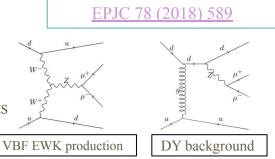

2



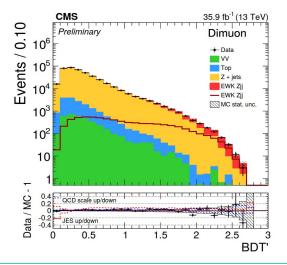
Higgs Boson lone player responsible for Electroweak Symmetry Breaking ?

- Measurements of vector boson fusion (VBF) and vector boson scattering (VBS) processes → Key processes to test SM EW sector and to experimentally probe nature of EWSB
 - VBF with Z/W is a 'standard candle' for the other fusion processes at LHC (e.g. Higgs production)
 - VBS production cross-section can be used to probe how Higgs unitarizes the scattering amplitude
- VBF and VBS topology
 - Two high energy hadronic jets (large dijet mass) in forward and backward regions
 - Hadronic activity suppressed inside rapidity gap due to absence of colour flow between interacting partons
- Experimental Analysis
 - $\circ \qquad Select \ EW \ V/VV \ events$
 - Estimate non-EW V/VV backgrounds
 - Combination of simulation and data driven techniques
 - Measurements
 - Inclusive and Differential Cross section Measurements
 - Search for anomalous Gauge Couplings

MBI 2021



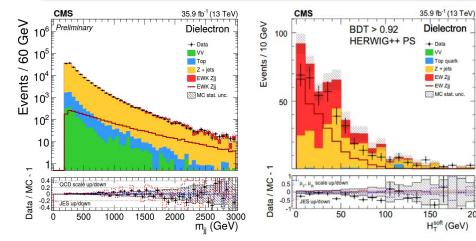
CMS VBF Z+2jets 2016 dataset: Overview



• The EWK Z+2jets process - Important SM benchmark to measure

- Cross check and validate other VBF productions
- VBF Z process :
 - Central Z decay associated with energetic forward-backward jets
 - \circ Large invariant dijet mass and large η separation between the tagging jets
- Pure EWK process :
 - Suppressed color flow between the quark-jets using QGL discriminator
 - Low hadronic activity in the central part of the detector
- Background Estimation
 - DY(major background)
 - MVA is used to discriminate signal & background
 - Independently in the di-electron and di-muon channels
 - Other backgrounds (top, WW, ZZ, WZ, ttbar)
 - Estimated from simulation
- Study of hadronic activity in tag-jet rapidity gap
 - Good agreement between data and QCD predictions

Published in EPJC



CMS Z+2jets: Results

200

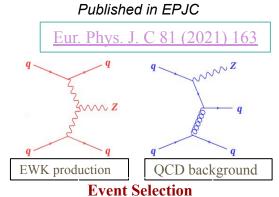
YIELDS

Sample	Initial	25	BDT > 0.92	
	ee	μμ	ee	μμ
ww	62 ± 16	116 ± 22	-	-
WZ	914 ± 38	2151 ± 63	1.6 ± 1.6	1.8 ± 1.8
ZZ	522 ± 17	1324 ± 29	1.8 ± 1.1	2.7 ± 1.3
tī	5363 ± 48	12938 ± 81	7.1 ± 1.9	7.1 ± 1.9
Single top quark	269 ± 18	723 ± 31	2	-
W + jets	34 ± 5	36 ± 5		-
DY Zjj	152750 ± 510	394640 ± 880	273 ± 20	493 ± 31
Total backgrounds	159890 ± 510	411890 ± 890	283 ± 29	505 ± 43
EW Zjj signal	2833 ± 10	6665 ± 16	194.9 ± 2.6	379.7 ± 3.9
Data	163640	422499	418	892

dielectron:	$\mu = 0.96 \pm 0.06 (\text{stat}) \pm 0.13 (\text{syst})$
	$= 0.96 \pm 0.14$ (total),
dimuon:	$\mu = 0.97 \pm 0.04 (\text{stat}) \pm 0.11 (\text{syst})$
	$= 0.97 \pm 0.12$ (total),
combined:	$\mu = 0.98 \pm 0.04 (\text{stat}) \pm 0.10 (\text{syst})$
	$= 0.98 \pm 0.11$ (total),
	defined in the kinematic region we eV, $p_T^{j}>25$ GeV, $m_{ii}>120$ GeV and $ \eta_i <2$.

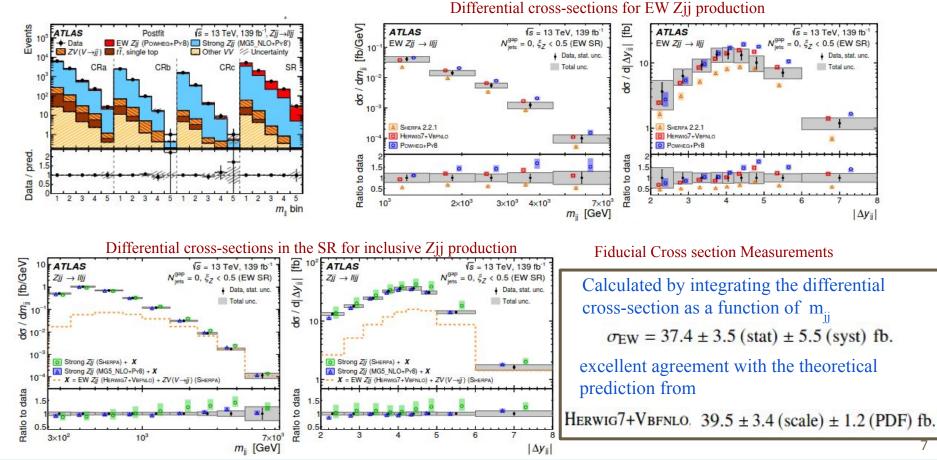
Fiducial Cross section Measurements

dielectron:	σ (EW $\ell\ell jj$) = 521 \pm 34 (stat) \pm 68 (syst) fb
1.	$= 521 \pm 76 \text{ (total) fb.}$ $\sigma(\text{EW } \ell \ell \text{jj}) = 524 \pm 23 \text{ (stat)} \pm 61 \text{ (syst) fb}$
dimuon:	$5 (E w cc_{JJ}) = 524 \pm 25 (stat) \pm 61 (syst) 10$ = 524 + 65 (total) fb.
combined:	σ (EW $\ell\ell jj$) = 534 ± 20 (stat) ± 57 (syst) fb
	$= 534 \pm 60$ (total) fb,
In agreeme	nt with SM prediction: $\sigma_{LO}(EW \ell \ell jj) = 543 \pm 24 \text{ fb}$


Geetanjali Chaudhary

ATLAS Z+2jets full Run II dataset: Overview

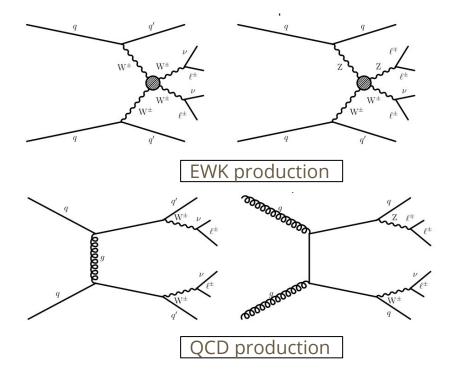
- Differential Cross section measurement
 - Observables : m_{ii} , $|\Delta y_{ii}|$, $\Delta \phi_{ii}$, and p_T^{-11}
 - Both the EW and EW+QCD cross sections are extracted for several different phase spaces
- Determine which event generator predictions can be used reliably in analyses that seek to exploit VBF and VBS at the LHC
 - Theoretical predictions calculated using Powheg+Pythia8, Herwig7+Vbfnlo and Sherpa2.2
- Background Estimation
 - Data-driven method used to constrain both the shape and normalisation of the strong Zjj background
 - Data split into four regions by imposing criteria on Z centrality ξ_Z [*] and multiplicity of jets in the rapidity interval between the leading and subleading jets, N^{gap}_{iets}
 - EW Zjj event yield is measured in the EW-enhanced SR using a binned maximum-likelihood fit



Dressed muons	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.4
Dressed electrons	$p_{\rm T}>25~{\rm GeV}$ and $ \eta <2.47$ (excluding $1.37< \eta <1.52)$
Jets	$p_{\rm T} > 25 \text{ GeV} \text{ and } y < 4.4$
VBF topology	$N_\ell = 2$ (same flavour, opposite charge), $m_{\ell\ell} \in (81, 101){\rm GeV}$
	$\Delta R_{\min}(\ell_1, j) > 0.4, \ \Delta R_{\min}(\ell_2, j) > 0.4$
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1} > 85 \text{ GeV}, \ p_{\text{T}}^{j2} > 80 \text{ GeV}$
	$p_{\rm T,\ell\ell} > 20 \text{ GeV}, \ p_{\rm T}^{\rm bal} < 0.15$
	$m_{jj} > 1000 \text{ GeV}, \ \Delta y_{jj} > 2, \ \xi_Z < 1$
CRa	VBF topology $\oplus N_{jets}^{gap} \ge 1$ and $\xi_Z < 0.5$
CRb	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} \ge 1$ and $\xi_Z > 0.5$
CRc	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} = 0 \text{ and } \xi_Z > 0.5$
SR	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} = 0$ and $\xi_Z < 0.5$

ATLAS Z+2jets: Results

Geetanjali Chaudhary


MBI 2021

- Why $W^{\pm}W^{\pm}jj$?
 - EW production dominant over QCD-induced
 - Distinct same-sign (SS) lepton state with low background
- Why WZjj ?
 - Sensitive to charged resonances or couplings
 - $\circ \quad \ \ Clean \ \ signature \ \ but \ higher \ \ background \\ \ \ compared \ to \ W^{\pm}W^{\pm}$
- ★ CMS First simultaneous W[±]W[±]jj & WZjj analyses using fully leptonic final states (exploiting full Run II data) Published in Phys. Lett. B

PLB 809(2020) 135710

CMS W[±]W[±] & WZ: Event Selection & Background Estimation

EVENT SELECTION IN SIGNAL REGIONS

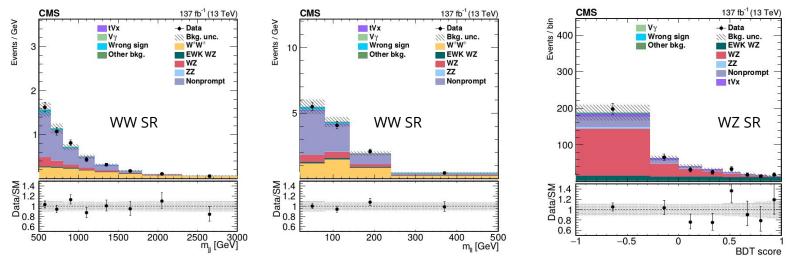
Variable	SSWW	WZ	
leptons	2 SS, P _T > 25/20 GeV	1 OS pair + 1, PT > 25/10/20 GeV	
m _{ℓℓ} – m _Z	> 15 GeV for ee	< <mark>1</mark> 5 GeV	
mμ	> 20 GeV	1.7	
mm	-	>100GeV	
рт ^ј	> 50GeV	> 50GeV	
рт ^{miss}	> 30 GeV	> 30 GeV	
Anti b-tagging	applied	applied	
tau veto	applied	applied	
max(z [*] _l)	<0.75	<1.0	
m _{jj}	> 500GeV	> 500GeV	
∆ŋ _{jj}	> 2.5	> 2.5	

 $z^{*}_{\ell} = \left|\eta_{\ell} - \left(\left.\eta_{j1} + \eta_{j2}\right) / 2\right| / \left|\left.\Delta\eta_{jj}\right.\right|$

BACKGROUND ESTIMATION :

- → Backgrounds estimated from simulation marked with [*] have normalization assessed from data, others are normalized to the best theoretical cross section prediction
- → In all cases where simulation is used, events are reweighted to correct for the pileup, lepton and trigger efficiencies to agree with the data distribution

- WW SR is dominated by the EW signal process after the kinematic selection
- WZ SR is dominated by QCD WZ events after the kinematic selection
- MultiVariate Analysis for $WZ \rightarrow$ enhance WZ EWK production w.r.t large WZ QCD production
- Overall good separation between EWK signal and background


BACKGROUNDS

Category	Estimation
Non Prompt	From Data-Driven technique - from fake rates and "Tight+Loose" "Loose+Loose" data events
Wrong sign	From charge mis-ID scale factors and simulated opposite sign events
QCD WZ[*], ZZ[*], tZq[*], WW QCD, WW DPS, VVV	From simulation

CMS W[±]W[±] & WZ: Results

Simultaneously fitting signal yields in WW & WZ signal regions as well as background yields in control regions (Non prompt, WZb(tZq) and ZZ), to assess normalization from data

YIELDS

Process	W±W	$W^{\pm}W^{\pm}$ SR		SR
	Pre-fit	Post-fit	Pre-fit	Post-fit
Total SM	535 ± 60	522 ± 49	216 ± 12	229 ± 23
Data	52	24	229	

UNCERTAINTIES

Source of uncertainty	$W^{\pm}W^{\pm}$ (%)	WZ (%)
Total systematic uncertainty	5.7	7.9
Statistical uncertainty	8.9	22
Total uncertainty	11	23

Process

 $EW W^{\pm}W^{\pm}$

EW+OCD $W^{\pm}W^{\pm}$

EW WZ

EW+QCD WZ

QCD WZ

CMS W[±]W[±] & WZ: Results

Theoretical prediction

with NLO corrections (fb)

 3.31 ± 0.47

 3.72 ± 0.59

 1.24 ± 0.18

 4.36 ± 0.88

 3.12 ± 0.70

Published in Phys. Lett. B

PLB 809(2020) 135710

Absolute and normalized - WW (EWK+QCD) differential cross section measurements on m_{jj} (left plot), $m_{ll} \& p_T^{max}$ and WZ (EWK+QCD) differential cross section measurements on m_{ij} (right plot)

Inclusive Fiducial Cross section Measurements

 $\sigma \mathcal{B}$ (fb)

 3.98 ± 0.45

 $0.37 \,({
m stat}) \pm 0.25 \,({
m syst}) \\ 4.42 \pm 0.47$

 $0.39 \, ({
m stat}) \pm 0.25 \, ({
m syst}) \ 1.81 \pm 0.41$

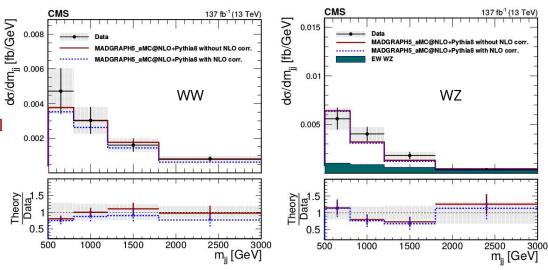
 $0.39 \,({
m stat}) \pm 0.14 \,({
m syst}) \\ 4.97 \pm 0.46$

 $0.40 \,({
m stat}) \pm 0.23 \,({
m syst}) \ 3.15 \pm 0.49$

 $0.45 \,(\text{stat}) \pm 0.18 \,(\text{syst})$

Theoretical prediction

without NLO corrections (fb)


 3.93 ± 0.57

 4.34 ± 0.69

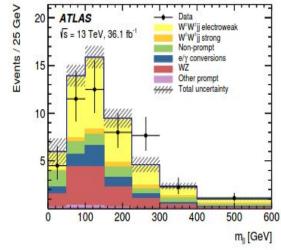
 1.41 ± 0.21

 4.54 ± 0.90

 3.12 ± 0.70

MBI 2021

11


Published in PRL

- Inclusive Cross section Measurement
- Kinematic selection cuts and background estimation almost same as CMS analysis

Phys. Rev. Lett. 123 (2019) 16180

	e^+e^+	e ⁻ e ⁻	$e^+\mu^+$	e ⁻ µ ⁻	$\mu^+\mu^+$	$\mu^-\mu^-$	Combined
WZ	1.48 ± 0.32	1.09 ± 0.27	11.6 ± 1.9	7.9 ± 1.4	5.0 ± 0.7	3.4 ± 0.6	30 ± 4
Non-prompt	2.2 ± 1.1	1.2 ± 0.6	5.9 ± 2.5	4.7 ± 1.6	0.56 ± 0.05	0.68 ± 0.13	15 ± 5
e/γ conversions	1.6 ± 0.4	1.6 ± 0.4	6.3 ± 1.6	4.3 ± 1.1	. <u> </u>	0	13.9 ± 2.9
Other prompt	0.16 ± 0.04	0.14 ± 0.04	0.90 ± 0.20	0.63 ± 0.14	0.39 ± 0.09	0.22 ± 0.05	2.4 ± 0.5
W [±] W [±] jj strong	0.35 ± 0.13	0.15 ± 0.05	2.9 ± 1.0	1.2 ± 0.4	1.8 ± 0.6	0.76 ± 0.25	7.2 ± 2.3
Expected background	5.8 ± 1.4	4.1 ± 1.1	28 ± 4	18.8 ± 2.6	7.7 ± 0.9	5.1 ± 0.6	69 ± 7
W [±] W [±] jj electroweak	5.6 ± 1.0	2.2 ± 0.4	24 ± 5	9.4 ± 1.8	13.4 ± 2.5	5.1 ± 1.0	60 ± 11
Data	10	4	44	28	25	11	122

YIELDS

Significance EWK WW : 6.5 σ (obs.)

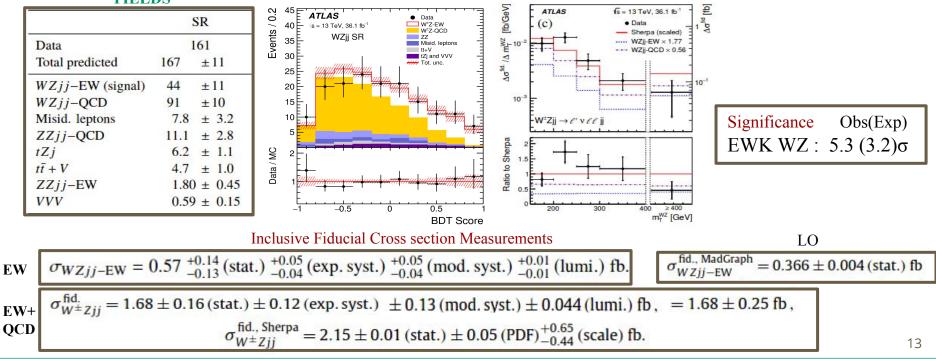
Inclusive Fiducial Cross section Measurements

$$\sigma^{\text{fid.}} = 2.89^{+0.51}_{-0.48} \text{ (stat.) } {}^{+0.24}_{-0.22} \text{ (exp. syst.) } {}^{+0.14}_{-0.16} \text{ (mod. syst.) } {}^{+0.08}_{-0.06} \text{ (lumi.) fb},$$

★ 2015 dataset contributes about 10% to the total dataset

Geetanjali Chaudhary

ATLAS WZ VBS 2015+2016 dataset: Results

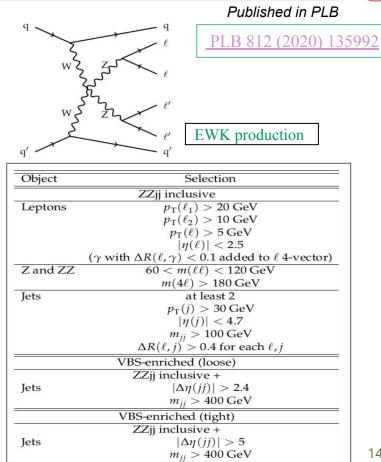


Published in PLB

Phys. Lett. B 793 (2019) 469

- Inclusive and Differential Cross section Measurements
- Kinematic selection cuts and background estimation almost same as CMS analysis
 - BDT score in the WZ SR is used to extract the significance of the EW WZ signal and to measure its fiducial cross-section via a maximum likelihood fit

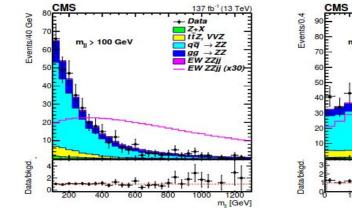
Geetanjali Chaudhary

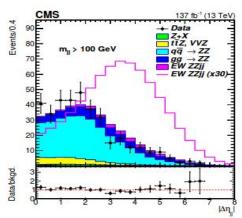


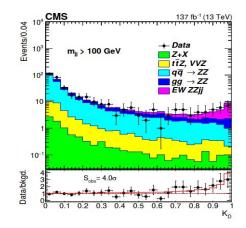
CMS ZZ VBS Full Run II : Overview

Measurement of EW ZZjj production using 4*l* events

- Really clean, fully reconstructable final state Ο
- Small instrumental background Ο
- Challenges
 - Small cross-section \bigcirc
 - Large QCD induced background 0
- **Background Estimation**
 - Irreducible Backgrounds Ο
 - QCD ZZ, ttZ, VVZ \rightarrow From MC
 - Reducible Backgrounds (Z+X) 0
 - Z+jets, tt+jets, WZ+jets \rightarrow Data Driven
- Making use of a matrix-element discriminant (K_{D}) to enhance EW production
 - BDT was also studied gave consistent results Ο
- Define three regions to measure EW production
 - ZZjj inclusive Ο
 - VBS-enriched loose 0
 - **VBS-enriched tight** 0




MBI 2021



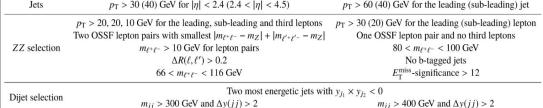
CMS ZZ: Results

Inclusive Fiducial Cross section Measurements

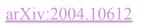
1. 1.	Perturbative order	SM σ (fb)	Measured σ (fb)			
ZZjj inclusive						
EW	LO NLO QCD NLO EW	$\begin{array}{c} 0.275 \pm 0.021 \\ 0.278 \pm 0.017 \\ 0.242 \substack{+0.015 \\ -0.013 \end{array}$	$0.33^{+0.11}_{-0.10}({ m stat})^{+0.04}_{-0.03}({ m syst})$			
EW+QCD		5.35 ± 0.51	$5.29^{+0.31}_{-0.30}$ (stat) ± 0.47 (syst)			
VBS-enriched (loose)						
EW EW+QCD	LO NLO QCD	$\begin{array}{c} 0.186 \pm 0.015 \\ 0.197 \pm 0.013 \\ 1.21 \pm 0.09 \end{array}$	$0.180^{+0.070}_{-0.060} (\text{stat})^{+0.021}_{-0.012} (\text{syst})$ $1.00^{+0.12}_{-0.11} (\text{stat}) \pm 0.07 (\text{syst})$			
	VBS	-enriched (tight)				
EW EW+QCD	LO NLO QCD	$\begin{array}{c} 0.104 \pm 0.008 \\ 0.108 \pm 0.007 \\ 0.221 \pm 0.014 \end{array}$	$0.09^{+0.04}_{-0.03}$ (stat) \pm 0.02 (syst) $0.20^{+0.04}_{-0.04}$ (stat) \pm 0.02 (syst)			

15

- Two ZZ decay channels: $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow \ell\ell vv$
- 4ℓ channel: Small background contribution (~3%) from reducible backgrounds
 - QCD ZZjj: Large irreducible background. EW/QCD is ~20% level overall, MVA is needed
 - Estimated from simulation. Simulation is normalized to data in a EW-suppressed CR


Electrons

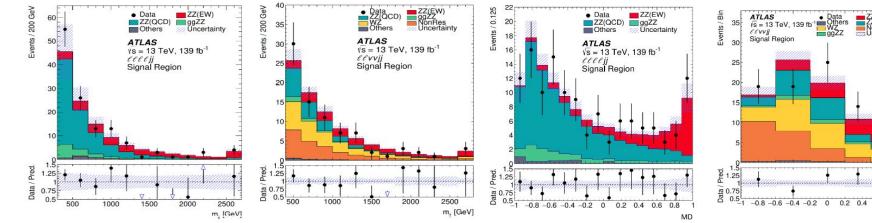
Muons


- Small backgrounds: Z+jets, top, WZjj
 - Data-driven: estimated using a fake-factor method
- Minor backgrounds: triboson, ttV
 - Estimated from simulation
- *llvv* channel: More complicated backgrounds
 - o WZjj
 - Constrained by a dedicated 3ℓ
 WZ CR
 - WWjj, top (non-resonant-ll backgrounds)
 - Estimated with events in dedicated eµ data CR
 - Z+jets
 - Largely suppressed with tight cut on the MET-significance[*]

[*]MET significance is used to distinguish missing transverse energy arising from undetectable particles to object mis-reconstruction, finite detector resolution, or detector noise

$\frac{\ell\ell\ell\ell jj}{p_{T} > 7 \text{ GeV}, |\eta| < 2.47} |d_{0}/\sigma_{d_{0}}| < 5 \text{ and } |z_{0} \times \sin \theta| < 0.5 \text{ mm}}$ $p_{T} > 7 \text{ GeV}, |\eta| < 2.7 \qquad p_{T} > 7 \text{ GeV}, |\eta| < 2.5 |d_{0}/\sigma_{d_{0}}| < 3 \text{ and } |z_{0} \times \sin \theta| < 0.5 \text{ mm}}$ $p_{T} > 30 (40) \text{ GeV for } |\eta| < 2.4 (2.4 < |\eta| < 4.5) \qquad p_{T} > 60 (40) \text{ GeV for the leading (sub-leading) jet}}$ $p_{T} > 30 (20) \text{ GeV for the leading, sub-leading and third leptons} \qquad p_{T} > 30 (20) \text{ GeV for the leading (sub-leading) lepton}$ $p_{T} > 30 (20) \text{ GeV for the leading (sub-leading) lepton} \qquad p_{T} > 30 (20) \text{ GeV for the leading (sub-leading) lepton}$

Submitted to Nature


ATLAS ZZ: Results

ZZ(EW) ZZ(QCD) NonRes Uncertainty

0.6 0.8

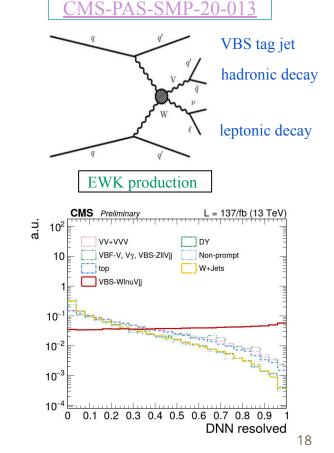
MD

EW and QCD Signal strength from fitting, and the EW ZZjj production significant

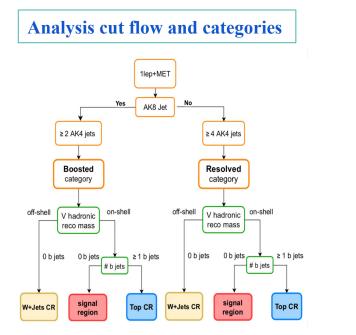
	$\mu_{ m EW}$	$\mu_{ ext{QCD}}^{\ell\ell\ell\elljj}$	Significance Obs. (Exp.)
llljj	1.5 ± 0.4	0.95 ± 0.22	5.5 (3.9) <i>o</i>
llvvjj	0.7 ± 0.7		1.2 (1.8) σ
Combined	1.35 ± 0.34	0.96 ± 0.22	5.5 (4.3) σ

Inclusive Fiducial Cross section Measurements

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
lllljj	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$1.14 \pm 0.04(\text{stat}) \pm 0.20(\text{theo})$
llvvjj	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

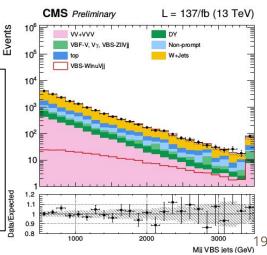

Geetanjali Chaudhary

 μ_{EW} is POI, μ_{QCD} (4 ℓ channel) is used as a free parameter in the fit to constrain QCD normalization


- First evidence of VBS in the semileptonic channel at LHC!
 - Purely EW process at LO with 6 fermions in final state
 - One V boson decay leptonically and other hadronically
 - Jets from initial scattering partons used to tag the VBS topology
 - Both resolved and boosted decay regimes of hadronic V bosons are combined in the analysis
- DNN models are trained for resolved and boosted category to separate signal and backgrounds
 - DNN architecture 4 layers of 64(32) nodes for resolved(boosted) category models
 - 14 input variables
 - Trained with Adam optimizer[*], dropouts and L2 weights regularization to avoid overtraining.

Geetanjali Chaudhary

Combined likelihood ratio fit performed on the DNN distributions in the SR and measuring the W+jets and top contributions in the dedicated CRs

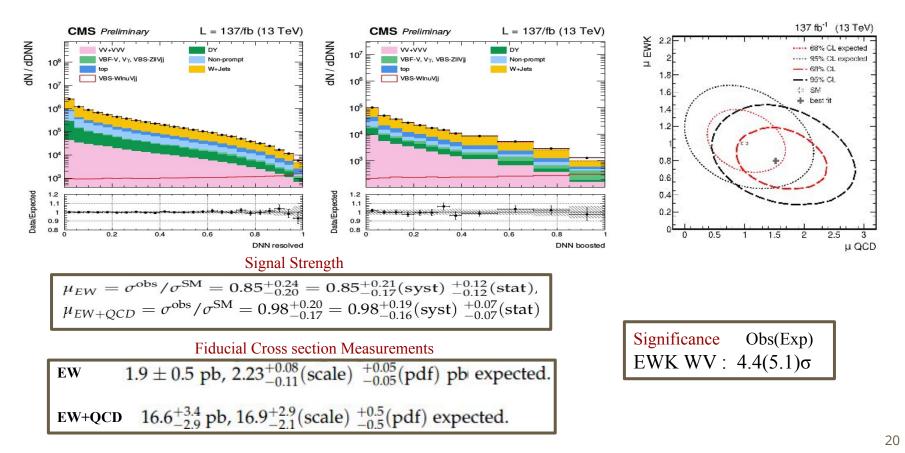

Background Estimation

- QCD multijet background
 - From Data-driven
- W+jets and Top
 - From Simulation but data-driven technique is applied to improve the modelling
- \circ ~ Minor backgrounds contribution, e.g. DY, VBF-V, VVV, V $\!\gamma$

processes

- From Simulation
- Postfit distributions of VBS tag jet invariant mass in the boosted category
- One of most important observables for the signal extraction, as evaluated using the SHAP[*] explanation techniques on the DNN models

[*] Ref. 1 Ref. 2

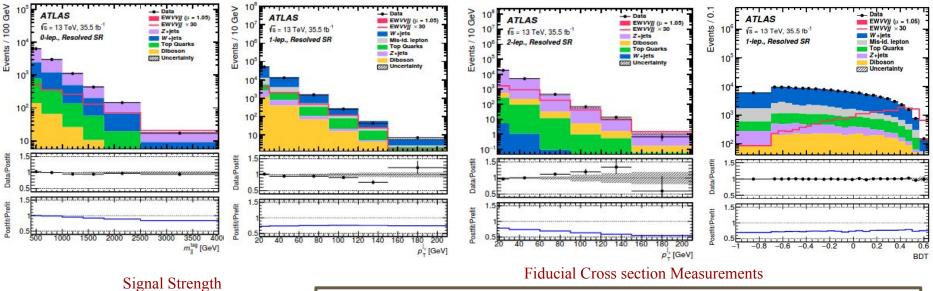


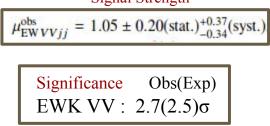
MBI 2021

CMS WV semileptonic: Results

Published in PRD

Phys. Rev. D 100, 032007 (2019)


- Three final states
 - $\circ \quad ZV \rightarrow vvqq, WV \rightarrow \ell vqq \text{ and } ZV \rightarrow \ell \ell qq$
 - Events are categorized into the 0, 1 and 2 lepton channels
 - Two different reconstruction techniques are considered : resolved and merged (as in CMS)
- Background Estimation
 - Estimated using a combination of MC and data-driven techniques
 - 1-lepton channel
 - W+ jets and ttbar production(dominant)
 - 2-lepton channel
 - Z+ jets production(dominant)
 - 0-lepton channel
 - All backgrounds contribute significantly
 - Multijet -smaller background
- Single-top and QCD-induced diboson production small background for all three lepton channels
- MVA is used
 - BDTs input variables are chosen in order to maximize the separation between signal and background
 - good agreement between data and simulation

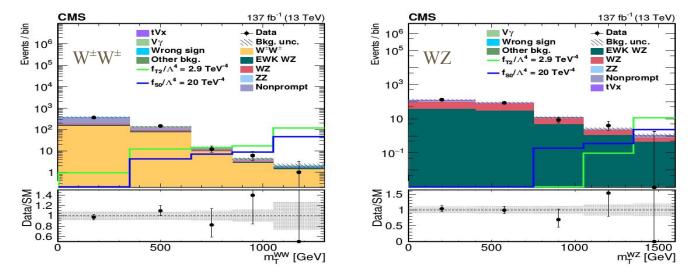

Selection	0-lepton	1-lepton	2-lepton		
Trigger	$E_{\rm T}^{\rm miss}$ triggers	Single-electron triggers Single-muon or $E_{\rm T}^{\rm miss}$ triggers	Single-lepton triggers		
Leptons	0 'loose' leptons with $p_{\rm T} > 7$ GeV	$\begin{vmatrix} 1 & \text{tight' lepton with } p_{\text{T}} > 27 & \text{GeV} \\ 0 & \text{loose' leptons with } p_{\text{T}} > 7 & \text{GeV} \end{vmatrix}$	2 'loose' leptons with $p_{\rm T} > 20 \text{ GeV}$ $\geq 1 \text{ lepton with } p_{\rm T} > 28 \text{ GeV}$		
E _T miss	> 200 GeV	> 80 GeV	-		
mee	-	-	$ \begin{vmatrix} 83 < m_{ee} < 99 \text{ GeV} \\ (-0.0117 \times p_{T}^{\mu\mu} + 85.63 \text{ GeV}) < m_{\mu\mu} < (0.0185 \times p_{T}^{\mu\mu} + 94 \text{ GeV}) \end{vmatrix} $		
Small-R jets	$p_{\rm T}$ > 20 GeV if $ \eta $ < 2.5, and $p_{\rm T}$ > 30 GeV if 2.5 < $ \eta $ < 4.5				
Large-R jets	$p_{\rm T} > 200 { m ~GeV}, \eta < 2$				
$V_{\text{had}} \rightarrow J$ $V_{\text{had}} \rightarrow jj$	V boson tagging, $\min(m_J - m_W , m_J - m_Z)$ 64 < m_{jj} < 106 GeV, jj pair with $\min(m_{jj} - m_W , m_{jj} - m_Z)$, leading jet with $p_T > 40$ GeV				
Tagging-jets	$j \notin V_{\text{had}}$, not b -tagged, $\Delta R(J, j) > 1.4$ $\eta_{\text{tog}, f_1} - \eta_{\text{tog}, f_2} < 0, m_{ij}^{\text{tog}} > 400 \text{ GeV}, p_T > 30 \text{ GeV}$				
Num. of b-jets	-	0	-		
Multijet removal	$ \begin{vmatrix} p_T^{\text{miss}} > 50 \text{ GeV} \\ \Delta \phi(E_{\text{miss}}^{T}, p_T^{\text{miss}}) < \pi/2 \\ \min[\Delta \phi(E_T^{\text{miss}}, \text{small-}R \text{ jet})] > \pi/6 \\ \Delta \phi(E_T^{\text{miss}}, \text{V}_{\text{had}}) > \pi/9 \end{vmatrix} $	-	-		

Event Selection

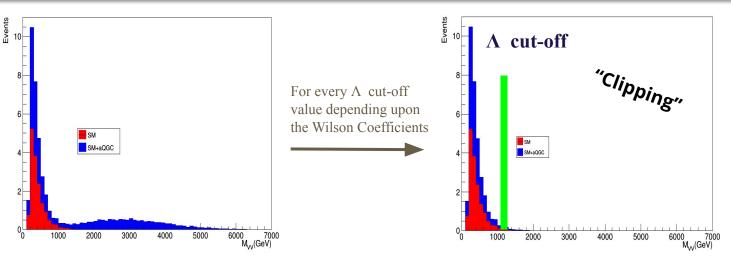
ATLAS VV VBS: Results

Fiducial phase space	Predicted $\sigma_{\text{EWVV}jj}^{\text{fid,SM}}$ [fb]	Measured $\sigma_{\rm EWVVjj}^{\rm fid,obs}$ [fb]
Merged	11.4 ± 0.7 (theo.)	$12.7 \pm 3.8 (\text{stat.})_{-4.2}^{+4.8} (\text{syst.})$
Resolved	31.6 ± 1.8 (theo.)	$26.5 \pm 8.2 (\text{stat.})^{+17.4}_{-17.1} (\text{syst.})$
Inclusive	43.0 ± 2.4 (theo.)	$45.1 \pm 8.6 (\text{stat.})^{+15.9}_{-14.6} (\text{syst.})$

MBI 2021



- ★ Limits on Anomalous Trilinear and Quartic Gauge Couplings associated with dimension-six and dimension-eight operators are given in the framework of an Effective Field Theory (EFT)
- ★ Covered in more detail in Saptaparna's talk tomorrow Searches for New Physics in multi-boson events using both anomalous coupling and effective field theory approaches
- **★** SMP-19-012(CMS $W^{\pm}W^{\pm}$ & WZ): Highlight of this aQGC analysis "Clipping method"


- Extensions of the Standard Model induce coupling modifications that can be parameterized in terms of the Effective Field Theory (EFT) approach.
- In this analysis, limits on **aQGCs** are set via EFT approach. Dimension-8 operators that can modify VVjj production through aQGCs are considered; one at a time
- Fitted regions and bins: different from SM analysis due to sensitivity and statistics

CMS aQGCs: Clipping Technique

- Measured signal is in general a sum of $M_{VV} \le \Lambda$ (unitarity limit) and $M_{VV} \ge \Lambda$. The only way to correctly use EFT is to make sure the region $M_{VV} \ge \Lambda$ does not significantly contribute
- Most conservative estimate = "clip" the generated aQGC distribution: take only SM contribution above Λ . This is the practical equivalent of not using data above Λ
- The technique is known as "Clipping", and essentially means using EFT only in the region it is valid
 - Implementation of "Clipping" in CMS Results
 - For aggc simulation, events violating unitarity (vary with operator values) are rejected ~ max 80%(WW) & max 50%(WZ). Data & SM processes are not affected
 25

CMS aQGCs: Results

-	Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-0.28, 0.31]	[-0.36, 0.39]	[-0.62, 0.65]	[-0.82, 0.85]	[-0.25, 0.28]	[-0.35, 0.37]
$f_{\rm T1}/\Lambda^4$	[-0.12, 0.15]	[-0.16, 0.19]	[-0.37, 0.41]	[-0.49, 0.55]	[-0.12, 0.14]	[-0.16, 0.19]
$f_{\rm T2}/\Lambda^4$	[-0.38, 0.50]	[-0.50, 0.63]	[-1.0, 1.3]	[-1.4, 1.7]	[-0.35, 0.48]	[-0.49, 0.63]
$f_{\rm M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]	[-5.8, 5.8]	[-7.6, 7.6]	[-2.7, 2.9]	[-3.6, 3.7]
$f_{\rm M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]	[-8.2, 8.3]	[-11, 11]	[-4.1, 4.2]	[-5.2, 5.5]
$f_{\rm M6}/\Lambda^4$	[-6.0, 6.5]	[-7.5, 7.6]	[-12, 12]	[-15, 15]	[-5.4, 5.8]	[-7.2, 7.3]
$f_{\rm M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]	[-10, 10]	[-14, 14]	[-5.7, 6.0]	[-7.8, 7.6]
$f_{\rm S0}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]	[-19, 19]	[-24, 24]	[-5.7, 6.1]	[-5.9, 6.2]
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-30, 30]	[-38, 39]	[-16, 17]	[-18, 18]

 $W^{\pm}W^{\pm}$ & WZ without considering unitarity bounds

 $W^{\pm}W^{\pm}$ & WZ with considering unitarity bounds

	Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
$f_{\rm T1}/\Lambda^4$	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69, 0.97]	[-0.94, 1.3]
$f_{\rm T2}/\Lambda^4$	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6, 3.1]	[-2.3, 3.8]
$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11, 12]	[-15, 15]
$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15, 14]	[-18, 20]
$f_{\rm M6}/\Lambda^4$	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22, 25]	[-31, 30]
$f_{\rm M7}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16, 18]	[-22, 21]
$f_{\rm S0}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34, 35]	[-31, 31]
$f_{\rm S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86, 99]	[-91,97]

26

- CMS and ATLAS results on EWK single and diboson productions are presented
 - Inclusive fiducial cross section measurements in all channels Ο
 - First Measurement of WV EW cross sections Ο
 - First Differential cross sections measurements of W[±]W[±] jj & WZjj processes on Ο several distributions
 - The first observation of the EW ZZjj production with the ATLAS experiment Ο
- Limits on dim-8 Wilson coefficients are set for anomalous quartic gauge couplings within the EFT validity for the first time

BACK UP

CMS

The signal is defined in the
kinematic region with dilepton
invariant mass m _{ll} >50 GeV,
parton transverse momentum
$p_T^{j}>25$ GeV, diparton invariant
mass m_{ij} >120 GeV and $ \eta $ <2.4
·

ATLAS

Dressed muons	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.4
Dressed electrons	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.47 (excluding 1.37 < $ \eta $ < 1.52)
Jets	$p_{\rm T} > 25 \text{ GeV and } y < 4.4$
VBF topology	$N_{\ell} = 2$ (same flavour, opposite charge), $m_{\ell\ell} \in (81, 101)$ GeV
	$\Delta R_{\min}(\ell_1, j) > 0.4, \ \Delta R_{\min}(\ell_2, j) > 0.4$
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1} > 85 \text{ GeV}, \ p_{\text{T}}^{j2} > 80 \text{ GeV}$
	$p_{\rm T,\ell\ell} > 20 \text{ GeV}, \ p_{\rm T}^{\rm bal} < 0.15$
	$m_{jj} > 1000 \text{ GeV}, \ \Delta y_{jj} > 2, \ \xi_Z < 1$
CRa	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} \ge 1$ and $\xi_Z < 0.5$
CRb	VBF topology $\oplus N_{iets}^{gap} \ge 1$ and $\xi_Z > 0.5$
CRc	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} = 0$ and $\xi_Z > 0.5$
SR	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} = 0$ and $\xi_Z < 0.5$

CMS

- W[±]W[±] fiducial region
 - Two same-sign leptons with a transverse momentum $p_T > 20$ GeV, $|\eta| < 2.5$ and $m_H > 20$ GeV
 - Two jets with $p_T > 50$ GeV, $m_{j,j} > 500$ GeV, $|\eta| < 4.7$ and a pseudo-rapidity difference $|\Delta \eta_{ij}| > 2.5$
- WZ fiducial region
 - Three leptons with $p_T > 20$ GeV, $|\eta| < 2.5$, and opposite charge same-flavor lepton pair with $|m_{II} - m_Z| < 15$ GeV
 - Two jets with $p_T > 50$ GeV, $m_{jj} > 500$ GeV, $|\eta| < 4.7$ and a pseudo-rapidity difference $|\Delta \eta_{ij}| > 2.5$

ATLAS

- W[±]W[±] fiducial region
 - Two same-sign leptons with a transverse momentum $p_T > 27$ GeV and $|\eta| < 2.5$
 - Two jets, one with $p_T > 65$ GeV and another with $p_T > 35$ GeV. The two highest- p_T jets must have an invariant mass $m_{jj} > 500$ GeV and a rapidity difference $|\Delta y_{jj}| > 2$
- WZ fiducial region
 - Leptons from Z decay should have $p_T > 25 \text{ GeV } \&$ lepton from W $p_T > 20$ GeV, $|\eta| < 2.5$, and opposite charge same-flavor lepton pair with $|m_{ll} - m_Z| < 10$ GeV
 - \circ ~ Two jets with $p_{T}{>}40$ GeV and $|\eta|{<}4.5$

ZZ full Run II : Fiducial Definitions

CMS

Particle type	Selection
-	ZZjj inclusive
Leptons	$\begin{array}{l} p_{\rm T}(\ell_1) > 20 {\rm GeV} \\ p_{\rm T}(\ell_2) > 10 {\rm GeV} \\ p_{\rm T}(\ell) > 5 {\rm GeV} \\ \eta(\ell) < 2.5 \end{array}$
Z and ZZ	$ \eta(\ell) < 2.5$ $60 < m(\ell \ell) < 120 \text{GeV}$ $m(4\ell) > 180 \text{GeV}$
Jets	$\begin{array}{l} \text{at least 2} \\ p_{\mathrm{T}}(\mathrm{j}) > 30 \mathrm{GeV} \\ \eta(\mathrm{j}) < 4.7 \\ m_{\mathrm{jj}} > 100 \mathrm{GeV} \\ \Delta R(\ell,\mathrm{j}) > 0.4 \mathrm{for \ each} \ell,\mathrm{j} \end{array}$
VBS	-enriched (loose)
Jets	ZZjj inclusive + $ \Delta \eta_{jj} > 2.4$ $m_{jj} > 400 \text{GeV}$
VBS	S-enriched (tight)
Jets	ZZjj inclusive + $ \Delta \eta_{jj} > 2.4$ $m_{ij} > 1$ TeV

ATLAS

- Fiducial regions are defined closely following the detector-level event selections, except
- 4ℓ channel:
 - Z window loose to [60, 120] GeV (is [66, 116] GeV for detector-level). This is to reduce migration effect and keep compatibility with the CMS publication

• $\ell\ell vv$ channel:

- Lepton eta cuts harmonized to 2.5 for both electrons and muons
- Generator level MET > 130 GeV instead of MET significance (difficult to define at truth level)

CMS

- WV fiducial region
 At parton level requiring all partons
 to have p >10 GeV and at least one
 - to have $p_T > 10$ GeV and at least one pair of outgoing quarks with
 - invariant mass m_{qq} >100 GeV

ATLAS

		Object selection			
Leptons $p_{\rm T} > 7 \text{ GeV}, \eta < 2.5$					
Small-R jets	$p_{\rm T} > 20$ GeV if $ \eta < 2.5$, and $p_{\rm T} > 30$ GeV if $2.5 < \eta < 4.5$				
Large-R jets	$p_{\rm T} > 200 \text{ GeV}, \eta < 2.0$				
		Event selection			
	0-lepton	Zero leptons, $p_{\rm T}^{\nu\nu} > 200 {\rm GeV}$			
Leptonic V selection	1-lepton	One lepton with $p_{\rm T} > 27$ GeV, $p_{\rm T}^{\nu} > 80$ GeV			
	2-lepton	Two leptons, with leading (subleading) lepton $p_{\rm T} > 28$ (20) GeV			
	2-icpton	$83 < m_{\ell\ell} < 99 \text{ GeV}$			
		One large-R jet, $\min(m_J - m_W , m_J - m_Z)$			
	Merged	$64 < m_J < 106 \text{ GeV}$			
Hadronic V selection		Two small- <i>R</i> jets, $\min(m_{jj} - m_W , m_{jj} - m_Z)$			
	Resolved	$p_{\rm T}^{j_1}$ >40 GeV, $p_{\rm T}^{j_2}$ >20 GeV			
		$64 < m_{jj} < 106 \text{ GeV}$			
10 mar - 1 mar - 1 m		Two small- <i>R</i> non- <i>b</i> jets, $\eta_{\text{tag},j_1} \cdot \eta_{\text{tag},j_2} < 0$, highest m_{jj}^{tag}			
Tagging-jets		$m_{jj}^{\text{tag}} > 400 \text{ GeV}, p_{\text{T}}^{\text{tag},j_{1,2}} > 30 \text{ GeV}$			
	0-lepton	-			
Number of h ists	1-lepton	0			
Number of <i>b</i> -jets	2-lepton	-			

CMS MVA for WZ

- Multivariate analysis \rightarrow enhance WZ EWK production w.r.t large WZ QCD production
- 13 Input variables retained ; BDT Gradient chosen from ROC curve

	Variable	Definition
	m_{ij}	Mass of the leading and trailing jets system
	$ \Delta \eta_{jj} $ Absolute difference in rapidity of the leading and trailing je	
ii yariahlaa	$\Delta \phi_{jj}$	Absolute difference in azimuthal angles of the leading and trailing jets
jj variables	$\Delta \phi_{ m jj} \ p_{ m T}^{j1} \ p_{ m T}^{j2}$	$p_{\rm T}$ of the leading jet
	$p_{\mathrm{T}}^{\mathrm{j}2}$	$p_{\rm T}$ of the trailing jet
	$\eta^{j\bar{1}}$	Pseudorapidity of the leading jet
VV variable	$ \eta^{\mathrm{W}} - \eta^{Z} $	Absolute difference between the rapidities of the Z boson
	$ \eta^{+}-\eta^{-} $	and the charged lepton from the decay of the W boson
	$z_{\ell_i}^*(i=1-3)$	Zeppenfeld variable of the three selected leptons
V ²	$z_{3\ell}^*$	Zeppenfeld variable of the vector sum of the three leptons
V-j mix variables	$egin{aligned} & z^*_{\ell_i}(i=1-3) \ & z^*_{3\ell} \ & \Delta R_{\mathrm{j}1,Z} \end{aligned}$	ΔR between the leading jet and the Z boson
		Transverse component of the vector sum of the bosons
	$ \vec{p_{\mathrm{T}}}^{\mathrm{tot}} /\sum_{i}p_{\mathrm{T}}^{i}$	and tagging jets momenta, normalized to their scalar $p_{ m T}$ sum

Overall good separation between EWK WZ and QCD WZ

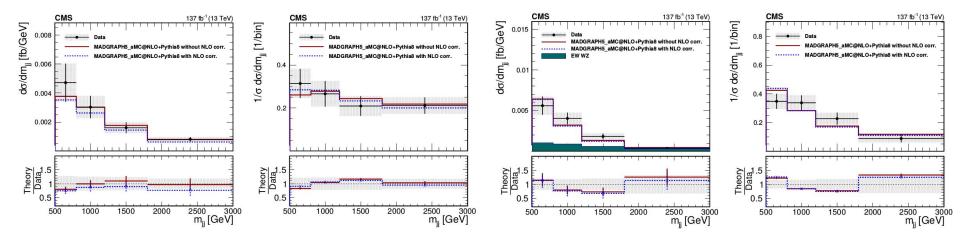
Note: Larger set of discriminating observables studied but variables improving sensitivity & showing some S/B separation retained.

- Fake rate ε_{fake}
 - Defined as the efficiency for fakeable objects to pass full lepton selection
 - Measured in a QCD-enriched sample with real lepton subtraction
 - \circ η and p_T dependence
- Extrapolate the background yields
 - from "tight+loose" and "loose+loose" data events in "SR"
 - by weighted

"tight+loose":
$$w_i = \frac{\epsilon_{fake}(p_{Ti}, \eta_i)}{1 - \epsilon_{fake}(p_{Ti}, \eta_i)}$$
"loose+loose": $(w_{ij} = \frac{\epsilon_{fake}(p_{Ti}, \eta_i)}{1 - \epsilon_{fake}(p_{Ti}, \eta_i)} \times \frac{\epsilon_{fake}(p_{Tj}, \eta_j)}{1 - \epsilon_{fake}(p_{Tj}, \eta_j)})$

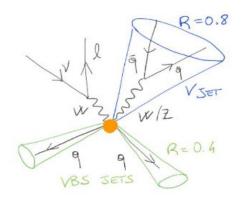
• and with real lepton from simulation subtraction

$$N^{non-prompt} = \left(\sum_{i} w_{i}^{data} - \sum_{i} w_{i}^{MC} - \sum_{i,j} w_{ij}^{data} + \sum_{i,j} w_{ij}^{MC}\right) N_{tt/tl}$$


Process	$W^{\pm}W^{\pm}$ SR		WZ	SR
	Pre-fit	Post-fit	Pre-fit	Post-fit
$EW W^{\pm}W^{\pm}$	209 ± 22	210 ± 26		_
$QCD W^{\pm}W^{\pm}$	13.6 ± 2.3	13.7 ± 2.2		—
Interference $W^{\pm}W^{\pm}$	8.4 ± 2.3	8.7 ± 2.3		—
EWWZ	14.1 ± 1.7	17.8 ± 3.9	54.3 ± 5.7	69 ± 15
QCD WZ	42.9 ± 4.7	42.7 ± 7.4	117.9 ± 6.8	117 ± 17
Interference WZ	0.3 ± 0.1	0.3 ± 0.2	2.2 ± 0.6	2.7 ± 1.0
ZZ	0.7 ± 0.1	0.7 ± 0.2	6.1 ± 0.4	6.0 ± 1.8
Nonprompt	211 ± 55	193 ± 40	14.6 ± 7.6	14.4 ± 6.7
tVx	9.0 ± 3.1	7.4 ± 2.2	15.1 ± 1.9	14.3 ± 2.8
$W\gamma$	7.8 ± 2.0	9.1 ± 2.9	1.1 ± 0.5	1.1 ± 0.4
Wrong-sign	13.5 ± 7.1	13.9 ± 6.5	1.6 ± 0.7	1.7 ± 0.7
Other background	5.0 ± 2.4	5.2 ± 2.1	3.3 ± 0.7	3.3 ± 0.7
Total SM	535 ± 60	522 ± 49	216 ± 12	229 ± 23
Data	52	24	22	9

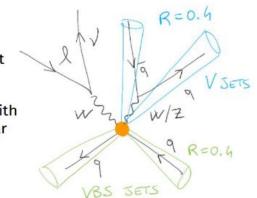
Source of uncertainty	W [±] W [±] (%)	WZ (%)
Integrated luminosity	1.5	1.6
Lepton measurement	1.8	2.9
Jet energy scale and resolution	1.5	4.3
Pileup	0.1	0.4
b tagging	1.0	1.0
Nonprompt rate	3.5	1.4
Trigger	1.1	1.1
Limited MC sample size	2.6	3.7
Theory	1.9	3.8
Total systematic uncertainty	5.7	7.9
Statistical uncertainty	8.9	22
Total uncertainty	11	23

• Absolute and normalized - WW (EWK+QCD) differential cross section measurements on m_{jj} (shown below), m₁₁ & p_T^{max} and WZ (EWK+QCD) differential cross section measurements on m_{ij} (shown below)



Boosted category

- 1 FatJet (anti-kt R=0.8 jet) from hadronic decay of W/Z boson with P_T > 200 GeV
 - $\circ \quad au_{21}$ variables used for ID
- At least 2 jets (anti-kt R=0.4) with $P_T > 30$ GeV tagged as **VBS jets** looking for the max invariant mass pair.


Resolved category

• At least 4 jets (anti-kt R=0.4) with P_T > 30 GeV.

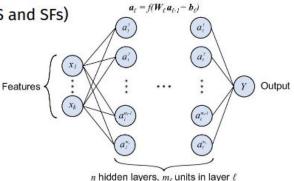
2 jets → **resolved** hadronic decay of W/Z boson 2 jets → scattered initial partons (**VBS jets**)

Tagging order:

- VBS tag jets: maximum invariant mass pair
- 2. V hadronic: pair with invariant mass near W/Z mass

	Signal region	Top control region	W+jets control region
Resolved category	Ele $p_T > 30$ GeV (2016), 35 GeV (2017, 2018) Muon $p_T > 30$ GeV PuppiMET > 30 GeV Leading VBS jet $p_T > 50$ GeV trailing VBS jet and Vjets $p_T > 30$ GeV $\Delta \eta_{VBS} > 2.5$, $M_{jj VBS} > 500$ GeV Leptonic $M^T_W < 185$ GeV bVeto with Loose DeepCSV WP V had $p_T < 200$ GeV 65 GeV < Mjj Vhad < 105 GeV	Ele p_{T} > 30 GeV (2016), 35 GeV (2017, 2018) Muon p_{T} > 30 GeV PuppiMET > 30 GeV Leading VBS jet p_{T} > 50 GeV trailing VBS jet and Vjets p_{T} > 30 GeV $\Delta \eta_{VBS}$ > 2.5 , $M_{jj VBS}$ > 500 GeV Leptonic M^{T}_{W} < 185 GeV bTag with Tight DeepCSV WP V had p_{T} < 200 GeV 65 GeV < Mjj Vhad < 105 GeV	Ele p_{T} > 30 GeV (2016), 35 GeV (2017, 2018) Muon p_{T} > 30 GeV PuppiMET > 30 GeV Leading VBS jet p_{T} > 50 GeV trailing VBS jet and Vjets p_{T} > 30 GeV $\Delta \eta_{VBS}$ > 2.5 , $M_{jj VBS}$ > 500 GeV Leptonic M_{W}^{T} < 185 GeV bVeto with Loose DeepCSV WP V had p_{T} < 200 GeV 40 < Mjj Vhad < 65 GeV, Mjj Vhad > 105 GeV
Boosted category	Ele $p_T > 30$ GeV (2016), 35 GeV (2017, 2018) Muon $p_T > 30$ GeV PuppiMET > 30 GeV Leading VBS jet $p_T > 50$ GeV trailing VBS jet $p_T > 30$ GeV $\Delta \eta_{VBS} > 2.5$, $M_{jj VBS} > 500$ GeV Leptonic $M^T_W < 185$ GeV bVeto with Loose DeepCSV WP V had $p_T > 200$ GeV 70 GeV < Mjj Vhad < 115 GeV	Ele $p_T > 30 \text{ GeV} (2016), 35 \text{ GeV} (2017, 2018)$ Muon $p_T > 30 \text{ GeV}$ PuppiMET > 30 GeV Leading VBS jet $p_T > 50 \text{ GeV}$ trailing VBS jet $p_T > 30 \text{ GeV}$ $\Delta \eta_{VBS} > 2.5 , M_{jj VBS} > 500 \text{ GeV}$ Leptonic $M^T_W < 185 \text{ GeV}$ bTag with Tight DeepCSV WP V had $p_T > 200 \text{ GeV}$ 70 GeV < Mjj Vhad < 115 GeV	Ele $p_T > 30 \text{ GeV} (2016), 35 \text{ GeV} (2017, 2018)$ Muon $p_T > 30 \text{ GeV}$ PuppiMET > 30 GeV Leading VBS jet $p_T > 50 \text{ GeV}$ trailing VBS jet $p_T > 30 \text{ GeV}$ $\Delta \eta_{VBS} > 2.5 , M_{jj VBS} > 500 \text{ GeV}$ Leptonic M ¹ _W < 185 GeV bVeto with Loose DeepCSV WP V had $p_T > 200 \text{ GeV}$ 40 GeV < Mjj Vhad < 70 GeV 115 GeV < Mjj Vhad < 250 GeV

Studied the ranking of the DNN input variables with the SHapley Additive exPlanations (SHAP) method (presented also at CMS ML forum <u>indico</u>


Table 1: Variables used as input of the DNN for the resolved and boosted models. The Zeppenfeld variable of a particle X is defined as $Z_X = \frac{\eta^X - \overline{\eta}^{VBS}}{\Delta \eta^{VBS}}$, where $\overline{\eta}^{VBS}$ is the mean η of VBS tag-jets, while the centrality [6, 49] is $C_{VW} = \min(\Delta \eta_-, \Delta \eta_+)$, with $\Delta \eta_+ = \max(\eta^{VBS}) - \max(\eta^{V_{had}}, \eta^W)$ and $\Delta \eta_- = \min(\eta^{VBS}) - \min(\eta^{V_{had}}, \eta^W)$. The η^W is built assuming the W-mass from the lepton and $p_{\text{T}}^{\text{miss}}$ kinematics.

Variable	Resolved	Boosted
Lepton pseudorapidity	\checkmark	\checkmark
Lepton transverse momentum	\checkmark	\checkmark
Zeppenfeld variable for the lepton	\checkmark	\checkmark
Number of jets with $p_{\rm T} > 30$ GeV	\checkmark	\checkmark
VBS leading tag-jet $p_{\rm T}$	-	\checkmark
VBS trailing tag-jet $p_{\rm T}$	\checkmark	\checkmark
Pseudorapidity interval between VBS tag-jets	\checkmark	\checkmark
Quark Gluon discriminator of the highest $p_{\rm T}$ jet of the VBS tag-jets	\checkmark	\checkmark
Azimuthal angle distance between VBS tag-jets	\checkmark	\checkmark
Invariant mass of the VBS tag-jets pair	5	\checkmark
$p_{\rm T}$ of jets from V_{had}	1	-
Pseudorapidity difference between V_{had} jets	\checkmark	-
Quark Gluon discriminator of the V _{had} jets	$\backslash \checkmark$	-
V _{had} p _T	<u> </u>	\checkmark
	\checkmark	\checkmark
Zeppenfeld variable for the V_{had}	-/ /	\checkmark
V _{had} centrality	- \)	\checkmark
Invariant mass of the VBS tag-jets pair p_{T} of jets from V_{had} Pseudorapidity difference between V_{had} jets Quark Gluon discriminator of the V_{had} jets $V_{had} p_{T}$ Invariant mass of the V_{had} Zeppenfeld variable for the V_{had}		✓ - - ✓ ✓ ✓

- Basic approach: **all Backgrounds** vs **Signal** (events weighted by XS and SFs)
- Training performed on events in signal region
- Trained 2 different models:
 - for **boosted** and **resolved** categories
 - joining all the years datasets
- Carefully checked and avoided overtraining

Boosted

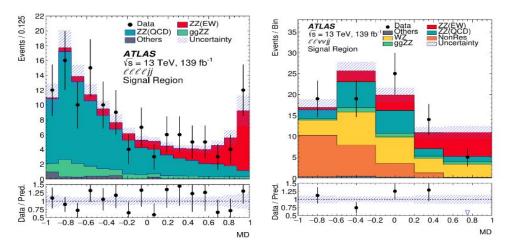
- DNN fully connected (64-32-32-32 nodes)
- 13 inputs (see next slide)
- Regularization: Batch normalization and L2 norm weights normalization
- 416k background, 50k signal samples

Resolved

- DNN fully connected (64-64-64 nodes)
- 16 inputs (see next slide)
- Regularization: Batch normalization and L2 norm weights normalization
- 1.7 M background, 220k signal samples

- MVA Analysis to extract EW ZZjj signal
- Gradient boosted decision tree (BDTG) is used in both channels
 - In the 4ℓjj channel, twelve input variables are used
 - The jet-related information provides the greatest sensitivity
 - In the $\ell \ell v v$ channel, thirteen input variables are used
 - Both the jet-related dilepton-related variables are important

Overall good separation between EWK ZZ and QCD ZZ


Rank	ш	ไไบบ
1	m_{jj}	$\Delta \eta(ll)$
2	leading p_T^j	m _{ll}
3	subleading p_T^j	$\Delta \phi(ll)$
4	$p_T(ZZjj)/h_T(ZZjj)$	m_{jj}
5	$Y(j1) \times Y(j2)$	MET significance
6	$ \Delta Y(jj) $	$\Delta Y(jj)$
7	Y_{Z2}^*	$Y(j1) \times Y(j2)$
8	Y_{Z1}^*	h_T
9	p_T^{4l}	$\Delta R(ll)$
10	m_{4l}	subleading p_T^j
11	p_T^{Z1}	MET
12	p_T^{l3}	subleading p_T^l
13	-	leading p_T^l

ATLAS ZZ: Results

- MVA Analysis to extract EW ZZjj signal
- 4ℓ channel trained in SR using EW vs QCD events
- *llvv* channel trained in SR using EW vs all backgrounds
- BDT score is used as final discriminator for fitting
 - 3 regions are used in fitting: 4l
 SR, 4l QCD CR, llvv SR
 - μ_{EW} is POI, μ_{QCD} (4 ℓ channel) is used as a free parameter in the fit to constrain QCD normalization

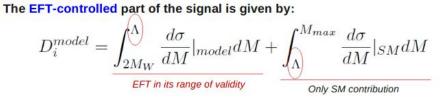
		Object selection	
Leptons Small- <i>R</i> jets Large- <i>R</i> jets	$p_{\rm T} > 7 \text{ GeV}, \eta < 2.5$ $p_{\rm T} > 20 \text{ GeV if } \eta < 2.5, \text{ and } p_{\rm T} > 30 \text{ GeV if } 2.5 < \eta < 4.5$ $p_{\rm T} > 200 \text{ GeV}, \eta < 2.0$		
		Event selection	
	0-lepton	Zero leptons, $p_{\rm T}^{\nu\nu} > 200 {\rm GeV}$	
Leatenie V selection	1-lepton	One lepton with $p_T > 27$ GeV, $p_T^{\nu} > 80$ GeV	
Leptonic V selection	2-lepton	Two leptons, with leading (subleading) lepton $p_{\rm T} > 28$ (20) GeV $83 < m_{\ell\ell} < 99$ GeV	
Hadronic V selection	Merged	One large- <i>R</i> jet, $\min(m_J - m_W , m_J - m_Z)$ 64 < m_J < 106 GeV	
	Resolved	Two small- <i>R</i> jets, min $(m_{jj} - m_W , m_{jj} - m_Z)$ $p_T^{j_1} > 40 \text{ GeV}, p_T^{j_2} > 20 \text{ GeV}$ $64 < m_{jj} < 106 \text{ GeV}$	
Tagging-jets		Two small- <i>R</i> non- <i>b</i> jets, $\eta_{\text{tag},j_1} \cdot \eta_{\text{tag},j_2} < 0$, highest m_{jj}^{tag} $m_{jj}^{\text{tag}} > 400 \text{ GeV}, p_{\text{T}}^{\text{tag},j_{1,2}} > 30 \text{ GeV}$	
	0-lepton		
Number of h ists	1-lepton	0	
Number of <i>b</i> -jets	2-lepton	-	

VV 2015+2016 : MVA

Variable	0-lepton	1-lepton	2-lepton
m_{jj}^{tag}	 ✓ 	-	~
$\Delta \eta_{jj}^{\mathrm{tag}}$	-	° 7	\checkmark
$p_{\mathrm{T}}^{\mathrm{tag},j_2}$	~	\checkmark	\checkmark
m _J	~	3 	-
$D_2^{(\beta=1)}$	~	3 1 - 30	~
$E_{\mathrm{T}}^{\mathrm{miss}}$	~	-	(—))
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},J)$	~	-	-
η_ℓ	-	✓	5-6
<i>n_{j,track}</i>	 ✓ 	3 —).	_
ζv	-	\checkmark	\checkmark
m_{VV}	-		\checkmark
p_{T}^{VV}	-	8 — 3	\checkmark
m _{VVjj}	-	\checkmark	_
p_{T}^{VVjj}	-	3 7 - C	\checkmark
w^{tag, j_1}	1	-	
w^{tag, j_2}	1	-	-

Table 2: Variables used for the BDT discriminant in the merged analysis category of each lepton channel.

VV 2015+2016 : MVA


Table 3: Variables used for the BDT discriminant in the resolved analysis category of each lepton channel analysis.

Variable	0-lepton	1-lepton	2-lepton
m_{jj}^{tag}	✓	-	\checkmark
$\Delta \eta_{jj}^{\mathrm{tag}}$	-	-	\checkmark
$p_{\mathrm{T}}^{\mathrm{tag}, j_1}$	~	\checkmark	<u></u> 0
$p_{\mathrm{T}}^{\mathrm{tag},j_2}$		\checkmark	1
	~	\checkmark	\checkmark
$\Delta \eta_{jj}$ $p_{T}^{j_{1}}$ $p_{T}^{j_{2}}$ $w^{j_{1}}$ $w^{j_{2}}$	~	-	_
$p_{\mathrm{T}}^{j_2}$	~		-
w ^j 1	~	\checkmark	~
w ^j ²	~	\checkmark	~
$n_{\rm tracks}^{j_1}$	-	\checkmark	~
n ^{j2} tracks	—	\checkmark	\checkmark
w ^{tag, j} 1	~	\checkmark	\checkmark
w^{tag, j_2}	~	\checkmark	~
$n_{\rm tracks}^{{\rm tag}, j_1}$	-	\checkmark	~
$n_{\text{tracks}}^{\text{tag,} j_2}$	-	\checkmark	~
n _{j,track}			~
n _{j,extr}	~		
$E_{\mathrm{T}}^{\mathrm{miss}}$	~	- ~ ~	-
ηε	-	\checkmark	-
$\Delta R(\ell, \nu)$	-	\checkmark	-
ζv	-	\checkmark	~
m _{VV}	-	-	~
m _{VVjj}	-	\checkmark	_

- It is well known that EFT amplitudes grow with M_{VV} and this growth is unphysical above a certain scale Λ ; this sets the limit of validity of EFT approach
- FACT: pure EFT does not provide any predictions for $M_{VV} > \Lambda$, dictated by the requirement of unitarity
- Measured signal is in general a sum of $M_{VV} < \Lambda$ and $M_{VV} > \Lambda$. The only way to correctly use EFT is to make sure the region $M_{VV} > \Lambda$ does not significantly contribute
- Only the most conservative limits are guaranteed to be true
 - Most conservative estimate = "clip" the generated aQGC distribution: take only SM contribution above Λ . This is the practical equivalent of not using data above Λ [*]

- The technique is known as "Clipping", and essentially means using EFT only in the region it is valid!
- Implementation of "Clipping" in CMS Results

[*] Eur. Phys. J. C (2018) 78: 403 Eur. Phys. J. C 80, 181 (2020)

Geetanjali Chaudhary

46