Goldstone Boson Scattering in Composite Higgs Models

Diogo Buarque Franzosi

Chalmers University & University of Gothenburg

Multi-Boson-Interaction Milan, August 25, 2021

- Composite Higgs (CH) in the CCWZ framework
- Onitarity in Goldstone Boson Scattering (GBS)
- $v \lesssim E \lesssim m_{\sigma}$: LET, $\mathcal{O}(p^4)$ corrections and GBS at colliders.
- $E \sim m_{\sigma}$: the scalar excitation.
- Somments on Partial Compositeness (PC)
- Onclusions

1 - Composite Higgs (CH)

 Technicolor (TC): 4D confining gauge theory G_{HC} with fermionic matter → dynamical EW symmetry breaking (hierarchy problem) (Weinberg 76, Susskind 79)

$$\langle \psi \psi \rangle \sim f^3 \rightarrow f = v$$

• Composite Higgs (CH): Vacuum misalignment (Higgs is a pNGB) (Little-hierarchy problem and doublet nature of Higgs) (Peskin 80, Preskill 80, Georgi, Kaplan 84', Agashe, Contino, Pomarol 05)

$v = f \sin \theta$

Model example (Gripaios, Pomarol, Riva, Serra 0902.1483):

	Sp(4)	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	SU(4)	SU(6)
$\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$		1	2	0	л	1
$\psi_{3,4}$		1	1	$\pm 1/2$	4	1

Condensation: the raise of electroweak scale and pNGBs

• UV Lagrangian

$$\mathcal{L}_{\rm UV} = \bar{\psi}^{\prime} \mathrm{i} \not\!\!D \psi^{\prime} + \delta \mathcal{L}_m + \delta \mathcal{L}$$

• Global symmetry at quantum level (from kinetic terms) (U(1) is explicitely broken by gauge anomaly)

$$G = SU(4)$$

- Gauge interactions, fermion masses and other interactions might break the global symmetry
- Condensation at scale $\Lambda \sim 4\pi f$

$$\langle \psi^{I}_{\alpha,c} \psi^{J}_{\beta,c'} \epsilon^{\alpha\beta} \epsilon^{cc'} \rangle \sim f^{3} E^{IJ}_{\psi}$$

• Spontaneously breaks $G \to H$

$${\rm SU}(4) \to {\rm Sp}(4)$$

CCWZ formalism Callan, Coleman, Wess, Zumino 69

- Below condensation scale, the d.o.f. are the composite states,
- including the (pseudo-)NGB π from the symmetry breaking manifesting its non-linearity properties

$$\xi(\pi) = e^{i\pi^A X^A}, \quad \xi(\pi) \to \xi(\pi') = g\xi h(g,\pi)^{\dagger}$$

• The custodial group $SU(2)_L \times SU(2)_R$ "rotates" with the Higgs (or pNGBs) vev

$$\Omega = e^{i \langle \tilde{h}
angle X_h / f}, \quad T^i_{L/R} = \Omega \hat{T}^i_{L/R} \Omega^{\dagger} \quad SU(2)_V \text{ left unbroken}$$

• Chiral expansion in ∂^{μ}/f with the gauged Maurer-Cartan one-forms

$$\begin{split} \omega_{\mu} &= \xi^{\dagger} \nabla_{\mu} \xi \quad \nabla_{\mu} \xi = (\partial_{\mu} - igW_{\mu}^{a}T_{L}^{a} - ig'B_{\mu}T_{R}^{3})\xi \\ \omega_{\mu} &= \tilde{\omega}_{\mu} + \hat{\omega}_{\mu} \equiv x_{\mu} + s_{\mu} \quad \text{Proj. to } X^{A}, S^{A} \\ x_{\mu} &\to h x_{\mu} h^{\dagger}, \quad s_{\mu} \to h s_{\mu} h^{\dagger} + h \partial_{\mu} h^{\dagger} \end{split}$$

• The leading order kinetic term $\mathcal{O}(p^2)$

$$\mathcal{L}_2 = rac{f^2}{N^2} \langle x^\mu x_\mu + ilde{\chi}
angle$$

• generates the vev relation

 $v = f \sin \theta$

• the Higgs-VV couplings modifications

 $\kappa_{V} \approx \cos \theta \gtrsim \begin{cases} 0.98 \text{ (EWPO, indirect)} \\ 0.90 \text{ (Higgs couplings meas.)} \\ 0.96 \text{ (SMEFT fit individual } c_{\varphi D} \text{)*} \end{cases}$

*Ethier, Ambrosio, Magni, Rojo 2101.03180

- $\tilde{\chi}$ depict spurionic *G*-breaking terms contributing to the pNGB potential
- At $\mathcal{O}(p^4)$ Gasser, Leutwyler 84, Bijjnens, Ecker 14

 $\mathcal{L}_{4} = L_{0} \langle x^{\mu} x^{\nu} x_{\mu} x_{\nu} \rangle + L_{1} \langle x^{\mu} x_{\mu} \rangle \langle x^{\nu} x_{\nu} \rangle + L_{2} \langle x^{\mu} x^{\nu} \rangle \langle x_{\mu} x_{\nu} \rangle + L_{3} \langle x^{\mu} x_{\mu} x^{\nu} x_{\nu} \rangle$

 $+ \quad L_4 \langle x^{\mu} x_{\mu} \rangle \langle \tilde{\chi} \rangle + L_5 \langle x^{\mu} x_{\mu} \tilde{\chi} \rangle + L_6 \langle \tilde{\chi} \rangle^2 + L_7 \langle \hat{\chi} \rangle^2 + \frac{1}{2} L_8 \langle \tilde{\chi}^2 + \hat{\chi}^2 \rangle$

$$-\mathrm{i} \quad L_9 \langle \tilde{f}_{\mu\nu} x^{\mu} x^{\nu} \rangle + 1/4 L_{10} \langle \tilde{f}_{\mu\nu}^2 - \hat{f}_{\mu\nu}^2 \rangle + \mathcal{K}_1 f^2 \langle x^{\mu} x_{\mu} \rangle \langle \tilde{\chi}^2 + \hat{\chi}^2 \rangle - \frac{1}{4} \langle f^{\mu\nu} f_{\mu\nu} \rangle$$

2 - Unitarity of GBS amplitudes DBF, Ferrarese 17'

- $\pi^a \pi^b \to \pi^c \pi^d$ scattering amplitude in exact SU(4)/Sp(4). Sp(4) channels $5 \otimes 5 = 1 \oplus 10 \oplus 14 \equiv A \oplus B \oplus C$ and partial waves, J
- Elastic unitarity condition read

 $Ima_{l}(s) = |a_{l}(s)|^{2}$ $a_{A0}(s) = a_{A0}^{(0)}(s) + a_{A0}^{(1)}(s) + \cdots$ $a_{A0}^{(0)}(s) = \frac{s}{16\pi f^2}$ Low Energy Theorem (LET) $a_{A0}^{(1)}(s) = \frac{s^2}{32\pi f^4} \left[\frac{1}{16\pi^2} \left(\frac{29}{12} + \frac{46}{18} \log\left(\frac{s}{\mu^2}\right) + 2\pi i \right) + \frac{2}{3} \widehat{L_A}(\mu) \right]$

- Unitarity/Perturbativity test |a(s)| < 1.
- LO prediction is conservative. NLO corrections anticipate unitarity violation.
- Unitarity implies an eventual resonance is lighter than $M_{\sigma} \lesssim 1.75/\sin\theta$ TeV. (Similar bounds for vector channel).
- Values of L_i : $1/(4\pi)^2$ (NDA), specific combinations bounded by unitarity and positivity Zhang, Zhou et. al. 18, 20
- Inverse Amplitude Method (IAM) unitarization model derived from dispersion relations, describes ρ hadron Dobado, Herrero, Pelaez 99'

3 - $v \leq E \leq f$: LET, $\mathcal{O}(p^4)$, GBS at colliders

- The minimal SO(5)/SO(4) is a peculiar coset because $SO(4) \sim SU(2) \times SU(2)$. The unbroken projectors and operators can all be split in independent terms
- Neglecting CP-odd and terms with χ Contino, Marzocca, Pappadopulo, Rattazzi 1109.1570

$$\begin{split} \mathcal{L}_4 &= c_i O_i \\ O_1 &= \langle x_\mu x^\mu \rangle^2, \quad O_2 &= \langle x_\mu x^\mu \rangle^2, \quad O_3 &= \langle E_{\mu\nu}^{L\,2} \rangle - \langle E_{\mu\nu}^{R\,2} \rangle , \\ O_4^\pm &= -i \langle x_\mu x_\nu \left[f_{\mu\nu}^{+L} \pm f_{\mu\nu}^{+R} \right] \rangle, \quad O_5^+ &= \langle (f_{\mu\nu}^-)^2 \rangle, \quad O_5^- &= \langle [(f_{\mu\nu}^{+L})^2 - (f_{\mu\nu}^{+R})^2 \rangle \end{split}$$

Linearization and Universal relations Liu, Low, Yin 1809.09126

• "Linearization" to SMEFT in the SILH basis (Giudice, Grojean, Pomarol, Rattazzi, 07) with extra dim-8 subset

$$\mathcal{L} = \sum_{i=H,T,y,6} \frac{c_i}{f^2} \mathcal{O}_i + \sum_{i=W,B,HW,HB} \frac{c_i}{m_\rho^2} \mathcal{O}_i + \frac{c_i^8}{f^2 m_\rho^2} (H^{\dagger} H) \mathcal{O}_i$$

• Universal relations from couplings due to the non-linear nature of the symmetry realization can only be respect by including dim-6 and dim-8 operators of the linear framework, e.g. the couplings $Z_{\mu\nu}A^{\mu\nu}[C_4^hh/v + C_4^{2h}(h/v)^2]$ respect

$$rac{C_4^{2h}}{C_4^h} = rac{1}{2}\cos heta pprox rac{1}{2}\left(1 + rac{c_{HW}^8 - c_{HB}^8}{c_{HW} - c_{HB}}(v/f)^2
ight)$$

• Moreover, leading operators in strong VBS $\mathcal{O}_{1,2}$ appear only at dim-8 in the SMEFT.

Feynrules/UFO implementation (work in progress)

- Implementation of CCWZ framework in FeynRules/UFO at $\mathcal{O}(p^4)$ to describe CH collider phenomenology.
- FeynRules/UFO provides a flexible tool to simulate collider events e.g. in MadGraph, using all its features like polarization selection, possibility to include radiative corrections.
- Would allow e.g. a more robust test of the Universal relations.
- Difference of the CCWZ/CH framework w.r.t. SMEFT and HEFT:
 - Universal relations from non-linear symmetry
 - Natural inclusion of other pNGBs (in non-minimal cosets minimal coset is NOT realizable by a fundamental gauge theory.)
 - and other heavy resonances e.g. spin-1 DBF, Cacciapaglia, Cai, Deandrea, Frandsen 1605.01363
- HEFT decribes CH, with a set of Higgs expansion coefficients (Higgs is treated as a singlet) e.g. Delgado, Dobado, Llanes-Estrada 1408.1193; Alonso, Brivio, Gavela, Merlo, Rigolin 1409.1589, and resonances e.g. Dobado, Llanes-Estrada, Sanz-Cillero 1711.10310

GBS at Colliders

- GBS are embedded in more complicated processes at colliders.
- Longitudinal weak bosons are manifestations of the GBs (equivalence theorem)
- Polarized scattering with MadGraph_aMC@NLO DBF, Mattelaer, Ruiz, Shil 1912.01725

$$q_1q_2 \ o \ q_1'q_2' W_\lambda^+ W_{\lambda'}^-, \quad \lambda=0, \, T$$

• Di-Higgs via VBF

$$q_1q_2 \rightarrow q_1'q_2'hh$$

• Di-pNGBs via VBF:

$$q_1q_2 \rightarrow q_1'q_2'\eta\eta, \quad q_1q_2 \rightarrow q_1'q_2'\pi^0\pi^0, \cdots$$

$pp \rightarrow jjhh$ at $\mathcal{O}(p^4)$ (Preliminary)

• Trilinear coupling has to be added (from potential) - suppressed.

Selection cuts

 $p_T(j) > 20 \text{ GeV}, \quad |\eta(j)| < 5 \quad M(jj) > 200 \text{ GeV}$ $|\eta(h)| < 3.5. \quad p_T(h) > 30 \text{ GeV},$

- Will ATLAS show an excess at high energy hh? JHEP07(2020)108
- Non-resonant scenario parametrized "only" by k_V and k_{2V} Bishara, Contino, Rojo 1611.03860
- Other Lorentz structures are present Other observables?

$$Z_{\mu}\mathcal{D}^{\mu\nu}Z_{\nu}\left(C_{1}^{h}\frac{h}{v}+C_{1}^{2h}\frac{h^{2}}{v^{2}}\right), \quad Z^{\mu\nu}Z_{\mu\nu}\left(C_{2}^{h}\frac{h}{v}+C_{2}^{2h}\frac{h^{2}}{v^{2}}\right)$$
$$\mathcal{D}^{\mu\nu}=\partial^{\mu}\partial^{\nu}-\sigma^{\mu\nu}\partial^{2}$$

$pp \rightarrow jjW_0^+W_0^-$ at $\mathcal{O}(p^4)$ (Preliminary)

Selection cuts

 $\begin{array}{l} p_{\mathcal{T}}(j) > 20 \, \mathrm{GeV}, \quad |\eta(j)| < 5 \\ \mathcal{M}(jj) > 250 \, \mathrm{GeV}, \quad \Delta \eta(jj) > 2.5, \\ |\eta(W^{\pm})| < 3.5. \quad p_{\mathcal{T}}(W^{\pm}) > 30 \, \mathrm{GeV}, \\ \mathcal{M}(W^{+}W^{-}) > 500 \, \mathrm{GeV}, \end{array}$

• Same-sign *WW* has been studied in the HEFT context Kozów, Merlo, Pokorsky, Szleper 1905.03354

 $\begin{array}{l} \text{BSM scenarios } c_{\theta} = 0.8, \ c_{\theta} = 0.9\\ \hline \text{Selection cuts}\\ p_{\tau}(j) > 20 \ \text{GeV}, \quad |\eta(j)| < 5\\ M(jj) > 250 \ \text{GeV}, \quad \Delta \eta(jj) > 2.5,\\ |\eta(W^{\pm})| < 2.5 . \quad p_{\tau}(W^{\pm}) > 30 \ \text{GeV},\\ M(W^{+}W^{-}) > 300 \ \text{GeV},\\ \hline \text{Very hard to distinguish from SM}. \end{array}$

	p-CM SM (a = 1)		p-CM CH (a = 0.8)			p-CM CH $(a = 0.9)$		
Process	σ [fb]	$f_{\lambda\lambda'}$	σ [fb]	$f_{\lambda\lambda'}$	$\sigma^{\rm CH}/\sigma^{\rm SM}$	σ [fb]	$f_{\lambda\lambda'}$	$\sigma^{\rm CH}/\sigma^{\rm SM}$
jj₩ ⁺ W [−]	171		173		1.00	172		1.00
$jjW_T^+W_T^-$	119	70%	116	69%	0.98	115	69%	0.96
$jjW_0^+W_T^-$	20.6	12%	21.5	13%	1.05	22.0	13%	1.07
$_{jj}W_T^+W_0^-$	23.8	14%	24.1	14%	1.01	23.9	14%	1.01
$_{jj}W_{0}^{+}W_{0}^{-}$	5.45	3%	7.17	4%	1.31	6.01	4%	1.10

Polarization variables

- One can use polarization variables beyond typical VBS cuts to e.g. extract the longitudinal component e.g. Mirkes 92, Bern, Diana, Dixon 11, Stirling, Vryonidou 12, Belyaev, Ross 13.
- In MadGraph_aMC@NLO DBF, Mattelaer, Ruiz, Shil 1912.01725.

$$pp \rightarrow jjW^+W_\lambda^-, \quad {
m with} \quad W^+ \rightarrow \mu^+
u_\mu \quad {
m and} \quad W_\lambda^- \rightarrow e^- ar
u_e,$$

• Can be used as tool to extract polarization fractions (see Carlos Cid talk)

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta} \approx \frac{3}{8}(1+\cos\theta)^2 f_L + \frac{3}{8}(1-\cos\theta)^2 f_R + \frac{3}{4}\sin^2\theta f_0$$

• and assess other useful variables, including selection cuts on decay products, e.g. $p_T(e^-) > 20 \text{ GeV}, \quad |\eta(e^-)| < 2.5, \quad \Delta R(j e^-) > 0.4$

- Very hard measurement. f_0 with DNN $\rightarrow c_{\theta} \sim 0.9$ at L = 3/ab 4% systematics. Jinmian Li, Shuo Yang, Rao Zhang, 2010.13281
- Current f_0 measurement at CMS: uncertainty $\sim 130\%$ CMS 2009.09429

Other pNGBs

Electro-weak coset	$SU(2)_L \times U(1)_Y$
SU(5)/SO(5)	${f 3}_{\pm1}+{f 3}_0+{f 2}_{\pm1/2}+{f 1}_0$
SU(4)/Sp(4)	$2_{\pm 1/2} + 1_0$
$SU(4) \times SU(4)'/SU(4)_D$	$3_0 + 2_{\pm 1/2} + \mathbf{2'}_{\pm 1/2} + 1_{\pm 1} + 1_0 + \mathbf{1'}_0$
Color coset	$SU(3)_c \times U(1)_Y$
SU(6)/SO(6)	$8_0 + 6_{(-2/3 \text{ or } 4/3)} + \bar{6}_{(2/3 \text{ or } -4/3)}$
SU(6)/Sp(6)	${f 8}_0+{f 3}_{2/3}+ar{f 3}_{-2/3}$
$SU(3) \times SU(3)'/SU(3)_D$	8_0

Ferretti 1604.06467

- At low energy VBS competes with other production mechanisms,
- Offshell Higgs and top contact interaction DBF, Ferretti, Li, Shu 2005.13578
- DY for charged pions.

η production via VBF and double- η -strahlung

 Double-η production via kinetic term (VBF, 2η-strahlung) DBF, Ferretti, Li, Shu 2005.13578

$$\mathcal{L} \supset rac{f^2}{8} D_\mu U D^\mu U^\dagger \supset \left(M_W^2 W^{+,\mu} W_\mu^- + rac{M_Z^2}{2} Z^\mu Z_\mu
ight) \left(1 + rac{2\cos heta}{v} h - rac{\sin^2 heta}{v^2} \eta^2
ight)$$

• Single- η via WZW anomalous interaction (VBF, η -strahlung)

D. Buarque Franzosi (Chalmers Univ.)

LET non-resonant enhancement FCC-hh 100 TeV

- No cancellations in EWPO $s_{\theta} \lesssim 0.2$ (unknown alignment mechanism)
- $pp \rightarrow jjZZ \rightarrow jje^+e^-\mu^+\mu^-$ events, SHERPA with typical VBS cuts.
- Probability assumed to be a smeared Poisson distribution
- Unitarity violation suppressed for sin $\theta < 0.2$ (Otherwise use unitarized amplitudes WHIZARD(Alboteanu, Kilian, Reuter 08) and PHANTOM (Ballestrero, DBF, Oggero, Maina 11)

DBF, Ferrarese 1705.02787

4 - $E \sim m_{\sigma}$: the scalar excitation

$$\sin \theta = 0.2$$

D. Buarque Franzosi (Chalmers Univ.)

2

0.0 4

10

8

 \sqrt{s} [TeV]

11/02/19 22/27

Unitarity and perturbativity give further information about effective Lagrangian beyond pure dimensional analysis:

$$g_{\sigma} \lesssim 0.8$$
 and $M_{\sigma} \lesssim rac{1.2}{\sin heta}$ TeV

Lightish 0⁺ DBF, Cacciapaglia, Deandrea 1809.09146

- The ubiquitous presence of a scalar composite state σ (and vector) might alleviate EWPO bounds
- Ingredients: Partial Compositeness and typical couplings
- Indication of light 0⁺ scalar in near conformal dynamics e.g. Hasenfratz, Rebbi, Witzel 16, Elander, Piai, 17

Scalar resonance at the FCC-hh, $f \gtrsim 1.2 \,\mathrm{TeV}$

• Mixing
$$h - \sigma$$
 very small $\alpha \sim \frac{2m_h^2}{m_\sigma^2}$, suppressed gluon fusion.

5 - Comments on Partial Compositeness (PC)

- One must address SM fermion in the CH context, in particular the top-quark mass.
- Partial Compositeness (PC): top mass from mixing with composite top partner Kaplan 91 and large anomalous dimension from Walking dynamics Holdom 81 Example with 2 rep. of G_{HC} : EW ψ , and QCD-charged χ . Barnard, Gherghetta, Ray 13, Ferretti, Karateev 13, Ferretti 16

	Sp(4)	SU(3) _c	SU(2) _L	$U(1)_Y$	SU(4)	SU(6)
$\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$		1	2	0	Λ	1
$\psi_{3,4}$		1	1	$\pm 1/2$	-	1
$\chi_{1,2,3}$		3	1	X	1	6
χ 4,5,6		3	1	-X	1	

- Typical pheno consequences:
 - A light ALP associated to the non-anomalous U(1) e.g. 1610.06591, at LHCb: 2106.12615
 - QCD charged pNGBs (heavier than EW pNGBs) e.g. 1507.02283
 - Heavy fermionic states (top partners and others) e.g. 1907.05929
 - $\bullet~$ Contributions of top loops in pNGB productions $\rightarrow~$ competing with GBS

- CH + PC continues to be a promising alternative to the SM.
- It has striking predictions easily distinguible from other BSM models,
- that will be observed at the energy and/or precision frontiers of our experimental aparatus.
- GBS, including VBS, di-Higgs, di-pNGB production are very important processes in this context
- The CCWZ formalism is the most appropriate to describe the CH physics

Backup

$$\begin{split} \mathcal{O}_{H} &= \frac{1}{2} \partial_{\mu} (H^{\dagger} H) \partial^{\mu} (H^{\dagger} H), \quad \mathcal{O}_{T} &= \frac{1}{2} (H^{\dagger} \overleftarrow{D}^{\mu} H) (H^{\dagger} \overleftarrow{D}_{\mu} H) \\ \mathcal{O}_{6} &= \lambda (H^{\dagger} H)^{3}, \quad \mathcal{O}_{y} &= y_{f} H^{\dagger} H \overline{f}_{L} H f_{R} \\ \mathcal{O}_{W} &= \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overleftarrow{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^{a}, \qquad \mathcal{O}_{B} &= \frac{ig'}{2} \left(H^{\dagger} \overleftarrow{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu} \\ \mathcal{O}_{HW} &= ig (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a}, \qquad \mathcal{O}_{HB} &= ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} . \end{split}$$

$$c_H = 1$$
, $c_y = -1/3$, $c_6 = -4/3$

$f^2 O_3$	$f^2 \mathcal{O}_4^+$	$f^2 \mathcal{O}_4^-$
$-4(\mathcal{O}_W - \mathcal{O}_B)$	$2(\mathcal{O}_{HW}+\mathcal{O}_{HB})$	$2(\mathcal{O}_{HW} - \mathcal{O}_{HB})$
$f^2 \mathcal{O}_5^+$	$f^2 \mathcal{O}_5^-$	
$4\left[\mathcal{O}_W + \mathcal{O}_B - (\tilde{\mathcal{O}}_{HW} + \mathcal{O}_{HB})\right]$	$-4\left[\mathcal{O}_W-\mathcal{O}_B-\left(\mathcal{O}_{HW}-\mathcal{O}_{HB}\right)\right]$	

Example of couplings table from Liu, Low, Yin 1809.09126

\mathcal{I}_{i}^{h}	C_i^h (NL)	C_i^h (D6)
(1) $\frac{h}{v} Z_{\mu} \mathcal{D}^{\mu\nu} Z_{\nu}$	$\frac{\frac{4c_{2_{W}}}{c_{W}^{2}}\left(-2c_{3}+c_{4}^{-}\right)}{+\frac{4}{c_{W}^{2}}c_{4}^{+}\cos\theta}$	$2(c_W + c_{HW}) + 2t_w^2(c_B + c_{HB})$
$(2) \frac{h}{v} Z_{\mu\nu} Z^{\mu\nu}$	$-\frac{2c_{2W}}{c_W^2}\left(c_4^-+2c_5^-\right)\\-\frac{2}{c_W^2}\left(c_4^+-2c_5^+\right)\cos\theta$	$-(c_{HW}+t_w^2c_{HB})$
$(3) \ \frac{h}{v} Z_{\mu} \mathcal{D}^{\mu\nu} A_{\nu}$	$8\left(-2c_3+c_4^-\right)t_w$	$2t_w(c_W + c_{HW}) \ -2t_w(c_B + c_{HB})$
$(4) \frac{h}{v} Z_{\mu\nu} A^{\mu\nu}$	$-4(c_4^-+2c_5^-)t_w$	$-t_w(c_{HW}-c_{HB})$
(5) $\frac{h}{v}W^+_{\mu}\mathcal{D}^{\mu\nu}W^{\nu} + h.c.$	$4(-2c_3 + c_4^-) \\ +4c_4^+ \cos\theta$	$2(c_W + c_{HW})$
(6) $\frac{h}{v}W^+_{\mu\nu}W^{-\mu\nu}$	$\begin{array}{c} -4(c_{4}^{-}+2c_{5}^{-}) \\ -4\left(c_{4}^{+}-2c_{5}^{+}\right)\cos\theta \end{array}$	-2c _{HW}

$$\mathcal{D}^{\mu\nu}=\partial^{\mu}\partial^{\nu}-g^{\mu\nu}\partial^{2}$$

\mathcal{I}_i^{2h}	C_i^{2h} (NL)	C_{i}^{2h} (D6)
(1) $\frac{\hbar^2}{v^2} Z_\mu \mathcal{D}^{\mu\nu} Z_\nu$	$\frac{\frac{2c_{2w}}{c_w^2}\left(-2c_3+c_4^-\right)\cos\theta}{+\frac{2}{c_w^2}c_4^+\cos2\theta}$	$\frac{1}{2}C_1^h$
(2) $\frac{\hbar^2}{v^2} Z_{\mu\nu} Z^{\mu\nu}$	$-\frac{c_{2_W}}{c_w^2}\left(c_4^-+2c_5^-\right)\cos\theta\\-\frac{1}{c_w^2}\left(c_4^+-2c_5^+\right)\cos2\theta$	$\frac{1}{2}C_2^h$
(3) $\frac{h^2}{v^2} Z_{\mu} D^{\mu\nu} A_{\nu}$	$4t_w\left(-2c_3+c_4^-\right)\cos\theta$	$\frac{1}{2}C_{3}^{h}$
(4) $\frac{h^2}{v^2} Z_{\mu\nu} A^{\mu\nu}$	$-2t_w\left(c_4^-+2c_5^- ight)\cos heta$	$\frac{1}{2}C_{4}^{h}$
(5) $\frac{h^2}{v^2} W^+_{\mu} \mathcal{D}^{\mu\nu} W^{\nu} + h.c.$	$2(-2c_3 + c_4^-)\cos \theta + 2c_4^+\cos 2\theta$	$\frac{1}{2}C_5^h$
(6) $\frac{\hbar^2}{v^2} W^+_{\mu\nu} W^{-\mu\nu}$	$\begin{array}{c} -2\left(c_4^-+2c_5^-\right)\cos\theta\\ -2\left(c_4^+-2c_5^+\right)\cos2\theta\end{array}$	$\frac{1}{2}C_6^h$
(7) $\frac{(\partial_{\nu} h)^2}{v^2} Z_{\mu} Z^{\mu}$	$\frac{8}{c_w^2}c_1\sin^2\theta$	×
(8) $\frac{\partial_{\mu}h\partial_{\nu}h}{v^2}Z^{\mu}Z^{\nu}$	$\frac{\frac{8}{c_W^2}}{c_W^2}c_2\sin^2\theta$	×
(9) $\frac{(\partial_{\nu} h)^2}{v^2} W^+_{\mu} W^{-\mu}$	$16c_1 \sin^2 \theta$	×
(10) $\frac{\partial^{\mu}h\partial^{\nu}h}{v^2}W^+_{\mu}W^{\nu}$	$16c_2 \sin^2 \theta$	×

DBF, Ferretti, Shu, Huang (2005.13578)

• Although $\eta - t - \overline{t}$ vanishes, $\eta^2 t\overline{t}$ is always present,

$$\mathcal{L} \supset -m_t \left(1 + rac{h}{v} \kappa_t - rac{h^2}{f^2} \kappa_{th^2} - rac{\eta^2}{f^2} \kappa_{t\eta^2}
ight) ar{t}t$$

Q_L	t _R	κ_t	κ_{th^2}	$\kappa_{t\eta^2}$	λ_η	comments
6	1	$\cos \theta$	1/2	1/2	$\cos \theta$	
6	15	$\cos \theta$	1/2	1/2	$\cos \theta$	$T_R^3 = 0$ of $(1,3)$
6	6	$\cos(2\theta)/\cos\theta$	2	1	$\cos \theta$	$\alpha_R = 0$
15	6	$\cos heta$	1/2	1/2	$\cos \theta$	

Figure: Left: Total η pair production cross section at 14 TeV LHC for Q_L , t_R^c in the **15**, **6** (cyan) and **6**, **6** (magenta) including the coherent sum of contact and off-shell Higgs contributions in solid lines, and only the off-shell Higgs in dashed lines. Right: Excluded region in $(m_\eta, \sin \theta)$ space for the same choice of spurions, using the leptonic selection.