Measurements of Dibosons+Jets Production Multi-Boson Interactions, 24.08.2021

Hannes Mildner on behalf of the ATLAS and CMS collaborations

The University Of Sheffield.

Introduction

- Presenting LHC Run 2 results of diboson+jets production
- Measurements of diboson-plus-jets production:
 - Test of perturbative QCD and event generation tools
 - Test of interplay of QCD and electroweak corrections
 - Allow to constrain new physics and background to searches
- Large Run 2 dataset, improved analysis methods, and precise theoretical predictions enable fairly precise measurements
- Measurements of jets exists for WW, WZ, and ZZ production
 - CMS WW: Phys. Rev. D 102 (2020) 092001, 2015-2016 data NEW
 - ► ATLAS WW+ ≥ 1 jet: JHEP 06 (2021) 003, 2015-2018 data NEW
 - CMS WZ: CMS-PAS-SMP-20-014 (preliminary), 2015-2018 data NEW
 - ATLAS WZ: Eur. Phys. J. C 79 (2019) 535, 2015–2016 data
 - ATLAS WZjj: Phys. Lett. B 793 (2019) 469, 2015–2016 data
 - CMS ZZ: Phys. Lett. B 789 (2019) 19, 2015–2016 data
 - ATLAS ZZ: Phys. Rev. D 97 (2018) 032005, 2015–2016 data
- Publications contain comprehensive analyses of diboson production, will only highlight parts relevant for diboson-plus-jet

Common Features of Analyses

- Analyses share many common features
 - Event selection: identify prompt leptons from W/Z decays, veto additional leptons
 - Increase signal-to-background ratio with few simple kinematic cuts (more elaborate methods for CMS WW)
 - Non-prompt and mis-id. lepton-background (a.k.a. fake-lepton background) estimated with data-driven methods
 - Prompt lepton backgrounds estimated with mixture of MC simulation and data-driven methods
 - Control and validation regions for important background processes
 - Data unfolded to correct for detector effects
- All analyses use anti- k_T jets with R = 0.4, but kinematic cuts vary and will be indicated
- Dominant uncertainties of jet measurements due to uncertainties in jet-energy scale, theoretical signal model, and, especially in case of WW production, background modelling

WW Production

- Measurements of WW production suffer from large $t\bar{t}$ background
- Background can be reduced by application of *b*-veto
- Jet vetoes typically used to further reduce $t\bar{t}$ yield

Jet Vetoes

- Jet veto introduces jet-energy scale uncertainties, uncertainty increases for more stringent vetoes
- Jet vetoes also theoretically challenging
 - Large logarithmic terms $\propto \log(m_{WW}/p_T^{jet})$ limit accuracy of predictions for jet-vetoed cross section
 - Availability of NNLO and NNLO+NNLL predictions improve situation
- Latest WW measurements improve accuracy by also measuring events with jets
 - Reduce tt background with sophisticated methods that don't rely on jet veto (CMS)
 - Employ precise data-driven tt
 background prediction method

Eur. Phys. J. C 81 (2021) 689

[2004.07720], data ATLAS

CMS WW: Event Selection

CMS WW: Phys. Rev. D 102 (2020) 092001, 2015-2016 dataset

- Two analyses: sequential cuts and MVA ("random forest")
- Different flavour (DF) and same-flavour (SF) categories

LVEI	IL SELE				
Quantity	Seque	ntial Cut	Random Forest		
	DÊ	SF	DF	SF	
Number of leptons	Stri	ctly 2	Str	ictly 2	
Lepton charges	Op	posite	Opposite		
$p_{\rm T}^{\ell \max}$	>25		>25		
$p_{\rm T}^{\ell{\rm min}}$	>	>20	>20		
$m_{\ell\ell}$	>20	>40	>30	>30	
Additional leptons	0		0		
$ m_{\ell\ell}-m_Z $	—	> 15	_	> 15	
$p_{\mathrm{T}}^{\ell\ell}$	>30	>30	_	_	
$p_{\rm T}^{\rm miss}$	>20	>55	_	_	
$p_{\rm T}^{\rm miss, proj}$, $p_{\rm T}^{\rm miss, track proj}$	>20	>20	_	_	
Number of jets		≤ 1	—	—	
Number of b-tagged jets		0		0	
DYMVA score		>0.9	_		
Drell–Yan RF score S_{DY}	—	—	>	0.96	
tt RF score S_{tt}	_	_	>	>0.6	

Event selection:

CMS WW: Total Cross Section Measurement

- Main result on total cross section from sequential cut analysis
- Data-driven method to estimate fake lepton background
- Normalization of top and DY backgrounds determined in CRs
- Other backgrounds estimated using theory predictions
- Fit performed in four SRs and four top CRs: 0 and 1 jet as well as same-flavour and different flavour

Category		Signal strength	Cross section [pb]		
0-jet	DF	1.054 ± 0.083	125.2 ± 9.9		
0-jet	SF	1.01 ± 0.16	$120 \hspace{0.1in} \pm 19$		
1-jet	DF	$0.93 \hspace{0.2cm} \pm \hspace{0.2cm} 0.12$	110 ± 15		
1-jet	SF	$0.76 \hspace{0.2cm} \pm \hspace{0.2cm} 0.20 \hspace{0.2cm}$	89 ± 24		
0-jet & 1-jet	DF	1.027 ± 0.071	122.0 ± 8.4		
0-jet & 1-jet	SF	$0.89 \hspace{0.2in} \pm 0.16$	106 ± 19		
0-jet & 1-jet	DF & SF	0.990 ± 0.057	117.6 ± 6.8		

- Addition of 1-jet region reduces both experimental uncertainties and sensitivity on signal modelling uncertainties
- Measurement of 117.6±6.8 fb in excellent agreement with NNLO prediction of 118.8±3.6 fb

CMS WW: Random Forest

CMS

Events / 0.02 a.u. 01 01 04 05

10³

1.0 0.8

0.0

02

Data/Pred. 1.2

- Measurement of jet multiplicity based on random forest selection
- Two classifiers S, against DY and top background, cut $S_{DY} > 0.96$ and $S_{top} > 0.2$
- Relatively small dependence of selection efficiency on N_{iets}

Nonprompt

06

04

0.8

Drell-Yan random forest score

H(125)

tŤ

0.4

06

Top quark random forest score

0.8

0.8

00

10

0.2

10

CMS WW: Results

- ► Measurement of fraction on 0, 1, and ≥2 jet events
- Background-subtracted data unfolded using matrix inversion and corrected for inefficiency
- Compared to Powheg NLO+PS prediction that is reweighted to match p^{WW}_T spectrum of NNLL+NNLO calculation

ATLAS WW + \geq 1 jet: JHEP 06 (2021) 003, 2015 – 2018 dataset

1. Selection

- ► =2 opposite-sing different-flavour leptons: $e^{\pm}\mu^{\mp}$ (p_{T} > 27 GeV)
- ► \geq 1 jet (p_T > 30 GeV, η < 4.5)
- 0 b-jets (p_T > 20 GeV, η < 2.5, 85% tagging efficiency)
- ▶ m_{eµ} > 85 GeV
- 2. Subtraction of backgrounds
 - Data-driven estimates for top and fake lepton background
 - Minor backgrounds from MC simulation
- 3. Fiducial cross-section measurement and unfolding of 18 observables (in a phase space requiring at least one jet)
 - ► Involving only leptons: $p_T^{\text{lead. lep.}}$, $p_T^{\text{sub-lead. lep.}}$, $m_{e\mu}$, $p_{T,e\mu}$, $y_{e\mu}$, $\Delta \phi_{e\mu}$, $\cos \theta^*$
 - Also involving jets and MET: $m_{T,e\mu}$, $p_T^{\text{lead. jet}}$, H_T , S_T , and N_{jet}
 - Additional measurements at $p_{\rm T}^{\rm lead. jet}$ > 200 GeV and $p_{\rm T}^{\rm lead. lep.}$ > 200 GeV

ATLAS *WWj*: Top Background Estimate (1/2)

- tt estimate based on technique of Eur. Phys. J. C 80 (2020) 528
- Two clean control regions with = 1, = 2 b-jets
- Only information from tt simulation: b-jet correlation factor Cb

$$\begin{split} N_{2b} &= \mathcal{L}\sigma_{t\bar{t}}\varepsilon_{e\mu} \cdot \mathcal{C}_{b}\varepsilon_{b}^{2} + N_{2b}^{\text{others,MC}} ,\\ N_{1b} &= \mathcal{L}\sigma_{t\bar{t}}\varepsilon_{e\mu} \cdot 2\varepsilon_{b} \left(1 - \mathcal{C}_{b}\varepsilon_{b}\right) + N_{1b}^{\text{others,MC}} ,\\ \Rightarrow N_{0b}^{t\bar{t}} &= \mathcal{L}\sigma_{t\bar{t}}\varepsilon_{e\mu} \cdot \left(1 - 2\varepsilon_{b} + \mathcal{C}_{b}\varepsilon_{b}^{2}\right) \end{split}$$

ATLAS *WWj*: Top Background Estimate (2/2)

- Estimate performed differentially, in each analysis bins
- Strongly reduces both tt modelling and b-tagging uncertainties

- *b*-jet correlation factor C_b typically close to 1, small dependence on most measured observables, small dependence on simulation
- Method works for 1-jet events as *b*-jet *p*_T cut lower than light-jet *p*_T cut (⇒ 2 and *b*-tag 1-jet CR exists) but larger dependence on *C_b* prediction
- Precision of method improves with jet-multiplicity and for jet-inclusive measurements

ATLAS WWj result compared to large number of theory predictions

Process	Generator	Parton shower	PDF	Matrix element $O(\alpha_{\rm S})$
$q\bar{q} \rightarrow WW$	MATRIX 2.0	-	NNPDF3.1	NNLO
$gg \rightarrow WW$	MATRIX 2.0	-	NNPDF3.1	NLO
$q\bar{q} \rightarrow WW$	Sherpa 2.2.2	Sherpa	NNPDF3.0	NLO (0-1 jet), LO (2-3 jets)
$q\bar{q} \rightarrow WW$	Powheg MINLO	Pythia 8	NNPDF3.0	NLO (0-1 jet)
$q\bar{q} \rightarrow WW$	MadGraph 2.3.3	Pythia 8	NNPDF3.0	NLO (0-1 jet)
$gg \rightarrow WW$	Sherpa 2.2.2 + OpenLoops	Sherpa	NNPDF3.0	LO (0-1 jet)

Fixed order: MATRIX nNNLO

- NNLO for $qq \rightarrow WW$ (only NLO accurate in 1-jet phase space)
- Combined with NLO prediction for gg → WW (only LO in 1-jet phase space) and NLO EW correction to qq → WWj
- Three NLO+PS predictions
 - ► All include NLO QCD corrections to qq → WWj
 - Combined with $gg \rightarrow WW(j)$ at LO

ATLAS WWj: Results (1/2)

- Background-subtracted data unfolded with iterative Bayesian method and corrected for inefficiencies
- Fiducial differential cross sections compared to predictions in phase space close to detector acceptance

Excellent agreement for leading jet and lepton p_T (in 1-jet events) over more than an order of magnitude

ATLAS WWj: Results (2/2)

Jets: $p_{\rm T} > 30$ GeV, $|\eta| < 4.5$

- ► Fiducial differential cross section as a function of jet multiplicity and $H_{\rm T} = \sum p_{\rm T}^{\rm jet}$
- Good measurement precision even for $N_{\text{jet}} \ge 5$ and $H_T > 500 \text{ GeV}$
- Good agreement with prediction

ATLAS *WWj*: Measurements at High Lepton p_T

- Additional measurements performed in a phase space requiring leading lepton p_T > 200 GeV
- Targeting V+jet-like topologies, with a relatively soft V radiated from a hard jet – interesting interplay of QCD and EW corrections

Good agreement between data and simulations

VV+jets and Anomalous Triple Gauge Couplings

Two effects in *VV*+jet topologies that affect predictions of effect of anomalous triple gauge couplings (aTGCs)

- 1. Effect of aTGCs diluted in VV+jets
 - V+jet-like topologies, with a relatively soft V radiated from a hard jet, important at high invariant mass
 - ▶ No triple gauge coupling effect as V+jets-like diagrams dominate
 - Effect In principle also relevant for jet-inclusive measurements
- 2. Enhanced interference of aTGC and SM amplitude in VV+jets
 - ► Without jet, aTGC amplitude (in particular the one corresponding to O_W operator of Warsaw basis) different helicity compared to SM ⇒ interference suppressed
 - Different helicities possible in VV+jets, recovers some of the interference ⇒ improves sensitivity to aTGC
 - ATLAS WW+jets measurement tried to take advantage of effect
 measure aTGC in events with hard jet

ATLAS WWj: EFT Interpretation

- $m_{\ell\ell}$ distribution in events with \geq 30 GeV (left) and \geq 200 GeV jet (right)
- Interference ("linear EFT") increases with jet p_T

- Comparing limits for
 - ≥ 30 GeV jet vs ≥ 200 GeV jet
 - Term linear in c_W (interference with SM) only versus linear+quadratic model
 - Sensitivity to linear term indeed improved for higher jet p_T cut but quadratic term still dominant

WZ Production

- WZ production: smaller cross section and leptonic branching ratio compared to WW
- Advantage: no $t\bar{t}$ background, small background contributions from ZZ, $t(\bar{t})Z$, and lepton fakes

CMS WZ: CMS-PAS-SMP-20-014, 2015-2018 dataset (preliminary)

Event selection for SR and CRs

Region	N_{ℓ}	$p_{T}\{\ell_{Z1}, \ell_{Z2}, \ell_{W}, \ell_{4}\}$	Nossf	$ M(\ell_{Z1}, \ell_{Z2}) - m_Z $	p_{T}^{miss}	Nbtag	$\min(M(\ell \ell'))$	$M(\ell_{Z1}, \ell_{Z2}, \ell_W)$
SR	=3	>{25, 10, 25} GeV	≥ 1	<15 GeV	>30 GeV	=0	>4 GeV	>100 GeV
CR-tīZ	=3	>{25, 10, 25} GeV	≥ 1	< 15 GeV	>30 GeV	>0	>4 GeV	>100 GeV
CR-ZZ	=4	>{25,10,25,10} GeV	≥ 1	< 15 GeV	-	=0	>4 GeV	>100 GeV
CR-conv	=3	>{25, 10, 25} GeV	≥ 1	-	$\leq \! 30 \mathrm{GeV}$	=0	$>4\mathrm{GeV}$	< 100 GeV

- ► $t(\bar{t})Z$, ZZ, and $V\gamma$ estimated from fit that includes control regions
- Data-driven estimate of fake lepton background
- Cross section measurement in combined fit of SR and CRs
- Additional features of analysis (charge asymmetry measurement, polarization measurement, limits on anomalous triple gauge couplings) not covered here

CMS WZ: Post-Fit in CR and SR

Post-fit result for N_{iet} distribution in ttZ CR and SR

CMS WZ: Results

Jets: $p_{\rm T} > 25$ GeV, $|\eta| < 2.5$

- Fiducial differential cross section as function of N_{jet} and jet p_{T}
- Bad description by all predictions, Powheg, aMC@NLO (includes 0 and 1 jet @NLO via FxFx), and MATRIX NNLO QCD

ATLAS WZ: Eur. Phys. J. C 79 (2019) 535, 2015–2016 dataset

- 1. Fiducial phase space:
 - =3 leptons, at least on same-flavour opposite-charge pair
 - ► *Z* candidate with $|m_{\ell\ell} m_Z| < 10$ GeV
 - $p_T^{\ell} > 15$ GeV (20 GeV) for leptons from Z (W)
 - $m_{T}^{W} > 30 \text{ GeV}$
- 2. Subtraction of backgrounds
 - Data-driven estimates for fake lepton background
 - Other backgrounds from MC simulation, ZZ and $t\bar{t}V$ scaled to CR yield
- 3. Fiducial cross section and polarization measurement

ATLAS WZ: Results

- ► N_{jet} and m_{jj} fiducial differential cross sections shown here
- Similar trend in Powheg+Pythia vs data as in CMS measurement
- Also compared to Sherpa 2.1 (extra jets at LO QCD) and Sherpa 2.2.2 (first jet at NLO QCD)

ATLAS WZjj: Overview

ATLAS measurement of *WZjj* in VBS-enhanced phase space: Phys. Lett. B 793 (2019) 469, 2015–2016 dataset

- 1. Fiducial phase space
 - Lepton selection similar to WZ measurement
 - Additionally: two jets in opposite hemispheres with m_{jj} > 500 GeV
- 2. Background estimates
 - Data-driven estimates for fake lepton background
 - Dedicated CRs for ZZ, ttV, and QCD WZjj (WZjj with at least one QCD vertex)
 - Minor backgrounds from MC simulation
- 3. Fit for both EW WZjj and QCD WZjj signal strength
 - BDT used to separate processes in SR
 - Three CRs included in fit
- 4. Differential cross section measurement of QCD+EW *WZjj*, scaling EW and QCD contributions to fit result

ATLAS WZjj: Differential cross sections

Jets: $p_{\rm T} > 40$ GeV, $|\eta| < 4.5$

- Fiducial differential cross section as function of jet multiplicity
- Compared to predictions from Sherpa 2.2.2 for QCD and EW WZjj, scaled to the fitted value

ZZ Production

Smallest cross section and leptonic branching ratio

Only very small prompt and fake lepton background

CMS ZZ: Overview

CMS ZZ: Phys. Lett. B 789 (2019) 19, 2015-2016 dataset

- 1. Fiducial phase space
 - ▶ 2 opposite-sign same-flavour lepton pairs ($p_T^{\ell} > 5$ GeV)
 - $p_T^{\ell_1} > 20 \text{ GeV}, p_T^{\ell_2} > 10 \text{ GeV},$
 - Two Z candidates with 60 < m_Z < 120 GeV</p>
- 2. Subtraction of backgrounds
 - Data-driven estimates for fake lepton background
 - Minor prompt backgrounds from MC simulation (< 2%)</p>
- 3. Measurement of jet multiplicities (both incl forward jets and central jets only) and kinematics

CMS ZZ: Results

Jets: $p_{\rm T} > 30$ GeV, $|\eta| < 4.7$

- Fid. diff. cross section as function of jet multiplicity and lead. jet p_{T}
- Statistical uncertainties dominant
- Again, under-prediction of 0-jet events, otherwise good agreement with Powheg+Pythia and MG5_aMC (0&1 jet @NLO)

ATLAS ZZ: Overview

ATLAS ZZ: Phys. Rev. D 97 (2018) 032005, 2015-2016 dataset

Event selection:

Type	Input or requirement
Leptons (e, μ)	Prompt Dressed with prompt photons within $\Delta R=0.1$ (added to closest prompt lepton) $p_{\rm T}>5~GeV$ $ \eta <2.7$
Quadruplets	Two same-flavor opposite-charge lepton pairs Three leading- p_T leptons satisfy $p_T > 20$ GeV, 15 GeV, 10 GeV
Events	Only quadruplet minimizing $ m_{\ell\ell}^a - m_Z + m_{\ell\ell}^b - m_Z $ is considered Any same-flavor opposite-charge dilepton has mass $m_{\ell\ell} > 5~{\rm GeV}$ $\Delta R > 0.1~(0.2)$ between all same-flavor (different-flavor) leptons Dileptons minimizing $ m_{\ell\ell}^a - m_Z + m_{\ell\ell}^b - m_Z $ are taken as Z boson candidates have mass 66 $GeV < m_{\ell\ell} < 116~{\rm GeV}$
Jets	Clustered from all non-prompt particles Anti- k_t algorithm with $R = 0.4$ $p_T > 30 \ GeV$ $ \eta < 4.5$ Rejected if within $\Delta R = 0.4$ of a fiducial lepton

After subtraction of prompt and fake lepton backgrounds: measurements of lepton and jet kinematics (both incl forward jets and central jets only)

ATLAS ZZ: Results

Jets: $p_{\rm T} > 30$ GeV, $|\eta| < 4.5$

- Fid. diff. cross section as function of jet multiplicity and lead. jet p_{T}
- As for CMS, under-prediction of 0-jet events
- ► High jet multiplicity and p_T regions better modelled by Sherpa (0&1 jet @NLO, 2&3 jet at LO)

Conclusion

- Large Run 2 dataset, advanced analysis techniques, and precise theoretical prediction enable precision studies of VV+jets
- CMS and ATLAS both published measurements of jets in WW, WZ, and ZZ production
- Good agreement with NLO QCD predictions of VV+jet production

