HEFT and the EW symmetry-breaking sector at high energy

Felipe J. Llanes-Estrada

People at Univ. Complutense de Madrid:

A. Dobado, J. Sanz-Cillero, A. Salas-Bernárdez, C. Quezada, J.R. Peláez... (also J.A. Oller @ Murcia, R. L. Delgado @ Politécnica)

Presented at MBI, Aug. 26th 2021

HEFT at 1 GeV

2 Some comments in comparing to SM and SMEFT

3 Unitarization of two-body $VV \rightarrow VV$ scattering

A cute little Lagrangian

2 Some comments in comparing to SM and SMEFT

3 Unitarization of two-body VV
ightarrow VV scattering

4 Systematic uncertainty estimate of IAM

And the Higgs was found...

• Explained the size of the atom and of all beautiful things

- 9 Yukawa couplings (6 q, 3 I^{\pm} masses)
- 3 CKM mixing angles, 1 δ_{CP} phase
- 3 ν masses
- 3 PMNS mixing angles, 1 δ_{CP} phase
- 3 gauge couplings (α , α_s , θ_W)
- v, m_H

But EWSBS sector little known:

redundantly measure λ , μ , further unknown couplings?

Higgs self-couplings and couplings to Goldstone bosons

$\Phi ightarrow W_L \sim \omega, \ Z_L \sim z, \ h$

(taken from J.J.Sanz-Cillero)

Two formulations, SMEFT & HEFT

SMEFT: 1350 CP-even operators to dimension 6 HEFT: O(160) NLO operators with functions of h, ω

Alonso, Jenkins, Manohar & Trott JHEP 04 (2014) 159.

Buchalla & Catà, JHEP 07 (2012) 101, Nucl.Phys.B 880 (2014) 552.

Beek, Nocera, Rojo, Slade, SciPost Phys. 7 (2019) 5, 070

Strategy 1: "No stone left unturned", constrain them all.

Minimization suited for Artificial Intelligence

Too many terms = too much noise

Maybe enough scientists with enough coefficients will find separation from SM...

http://notapipe.biz/quality-quantity-and-infinite-monkeys/

10 / 80

Cut to the chase: New physics in Vector Boson Scattering? (VBScan \checkmark) Regime $m_h \ll E \ll \Lambda_{NP}$

•
$$m_h$$
, m_W , m_Z ..., $g_{
m gauge} = 0$; only operators $\partial \propto E$

The VBS part becomes quite simple

(well, except v)

- h additional scalar particle distinguished by symmetry breaking
- Relevant processes: $W_L W_L \rightarrow W_L W_L$, $W_L W_L \rightarrow (h)h$, $hh \rightarrow hh$, $W_L h \rightarrow W_L h$

HEFT at 1 GeV

• Advantage for expt.: use the highest energy data of the LHC!

(Under hypothesis of SU(2) isospin custodial symmetry, only even numbers of W)

13 / 80

Aug 26th 2021

13 / 80

R.L. Delgado, A. Dobado, FJLE and others, series of Complutense papers

Equivalence theorem

• Scattering observables with W_L , Z_L approximately those of the Goldstone ω , z

fig. by Anand and Cantrell

$$\mathcal{L}_{0} = \frac{v^{2}}{4} F(h) (D_{\mu}U)^{\dagger} (D^{\mu}U) + \frac{1}{2} \partial_{\mu}h \partial^{\mu}h - V(h)$$
$$U \equiv \sqrt{1 - \omega^{2}/v^{2}} + i \vec{\omega} \cdot \vec{\tau}/v$$
(coordinates of the nonlinear sigma model)

$$F(h)_{HEFT} = 1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 + \dots$$

< 4 ₽ > <

Compact, seven-number version of agnostic TeV-scale new physics

$$\mathcal{L} = \frac{1}{2} \left(1 + 2\mathbf{a}\frac{h}{v} + \mathbf{b}\left(\frac{h}{v}\right)^2 \right) \partial_\mu \omega^a \partial^\mu \omega^b \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2} \right)$$

$$+ \frac{4\mathbf{a}_4}{v^4} \partial_\mu \omega^a \partial_\nu \omega^a \partial^\mu \omega^b \partial^\nu \omega^b + \frac{4\mathbf{a}_5}{v^4} \partial_\mu \omega^a \partial^\mu \omega^a \partial_\nu \omega^b \partial^\nu \omega^b$$

$$+ \frac{1}{2} \partial_\mu h \partial^\mu h + \frac{g}{v^4} (\partial_\mu h \partial^\mu h)^2$$

$$+ \frac{2\mathbf{d}}{v^4} \partial_\mu h \partial^\mu h \partial_\nu \omega^a \partial^\nu \omega^a + \frac{2\mathbf{e}}{v^4} \partial_\mu h \partial^\nu h \partial^\mu \omega^a \partial_\nu \omega^a.$$

R. L. Delgado, A. Dobado and FJLE, PRD 91, 075017 2015

Derivative expansion (\simeq ChPT)

$$\mathcal{L} = \frac{1}{2} \left(1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 \right) \boxed{\partial_\mu \omega^a \partial^\mu \omega^b} \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2} \right)$$

$$+ \frac{4a_4}{v^4} \partial_\mu \omega^a \partial_\nu \omega^a \partial^\mu \omega^b \partial^\nu \omega^b + \frac{4a_5}{v^4} \boxed{\partial_\mu \omega^a \partial^\mu \omega^a \partial_\nu \omega^b \partial^\nu \omega^b}$$

$$+ \frac{1}{2} \partial_\mu h \partial^\mu h + \frac{g}{v^4} \boxed{(\partial_\mu h \partial^\mu h)^2}$$

$$+ \frac{2d}{v^4} \partial_\mu h \partial^\mu h \partial_\nu \omega^a \partial^\nu \omega^a + \frac{2e}{v^4} \partial_\mu h \partial^\nu h \partial^\mu \omega^a \partial_\nu \omega^a.$$

R. L. Delgado, A. Dobado and FJLE, PRD 91, 075017 2015

17 / 80

э

17 / 80

Renormalized one-loop computations

Top-antitop Castillo, Delgado, Dobado, FLE Eur.Phys.J.C 77 (2017) 7, 436

$$\mathcal{L}_{4} = -\left(1 + c_{1}\frac{h}{v} + c_{2}\frac{h^{2}}{v^{2}}\right)\left\{\left(1 - \frac{\omega^{2}}{2v^{2}}\right)M_{t}t\bar{t} + \frac{i\sqrt{2}\omega^{0}}{v}M_{t}\bar{t}\gamma^{5}t - i\sqrt{2}\frac{\omega^{+}}{v}M_{t}\bar{t}_{R}b_{L} + i\sqrt{2}\frac{\omega^{-}}{v}M_{t}\bar{b}_{L}t_{R}\right\}$$

Photon-photon Delgado, Dobado, Herrero and Sanz-Cillero, JHEP 1407, 149 (2014).

$$\mathcal{L}_{4} = \frac{2e(a_{2} - a_{3})}{v^{2}} A_{\mu\nu} \left[i \left(\partial^{\nu} \omega^{+} \partial^{\mu} \omega^{-} - \partial^{\mu} \omega^{+} \partial^{\nu} \omega^{-} \right) \right. \\ \left. + eA^{\mu} \left(\omega^{+} \partial^{\nu} \omega^{-} + \omega^{-} \partial^{\nu} \omega^{+} \right) - eA^{\nu} \left(\omega^{+} \partial^{\mu} \omega^{-} + \omega^{-} \partial^{\mu} \omega^{+} \right) \right] \\ \left. - \frac{c_{\gamma}}{2} \frac{h}{v} e^{2} A_{\mu\nu} A^{\mu\nu} + \frac{e^{2} a_{1}}{2v^{2}} A_{\mu\nu} A^{\mu\nu} \left(v^{2} - 4\omega^{+} \omega^{-} \right) \right]$$

• But resonance poles can nonetheless appear

2 Some comments in comparing to SM and SMEFT

3 Unitarization of two-body VV
ightarrow VV scattering

4 Systematic uncertainty estimate of IAM

SMEFT by canonical dimension (independently of N_{loops})
HEFT by number of derivatives (independently of N_{particles})

Example 1

and a service an

Example 2

$W_L W_L \partial^4 W_L W_L$

- NLO in HEFT (consider immediately after the SM $W_L \partial^2 W_L$)
- Dim. 8 In SMEFT (consider after Dim. 6 operators worked out)

$$\mathcal{L}_{SM} = (D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi - \underbrace{\lambda(\Phi^{\dagger}\Phi)^{2} - \mu^{2}\Phi^{\dagger}\Phi}_{V(\Phi)} + \mathcal{L}_{YK}$$
$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \omega_{1} + i\omega_{2} \\ (\nu + h) + i\omega_{3} \end{pmatrix}$$

Felipe J. Llanes-Estrada (fllanes@ucm.es) HEFT at 1 GeV 23/80

- ω_a and *h* fit in a left-SU(2) doublet
- Higgs always in the combination: (h + v)
- Higher symmetry
- Typical when h is a fundamental field
- ET usually based in a cutoff Λ expansion: $O(d)/\Lambda^{d-4}$ (d = operator dimension: 4,6,8 ...)

Non-linear representation: (HEFT)

- h is a SU(2) singlet and ω_a are coordinates on a coset: SU(2)_L × SU(2)_R/SU(2)_V ≃ SU(2) ≃ S3
- Lesser symmetry and more independent higher dimension effective operators but less model dependent
- Derivative expansion
- EChL with F(h) insertions
- Typical for composite models of the SBS (*h* as a GB) (Strongly interacting and consistent with the presence of the GAP)

Dobado and Espriu, Prog.Part.Nucl.Phys. 115 (2020) 103813

- But change coordinates like Cartesian to Spherical ones
- Use coordinate-independent approach (San Diego)

Note the "SM Higgs potential" might be a red herring

Felipe J. Llanes-Estrada (fllanes@ucm.es) HEFT at 1 GeV 27 / 80

If there is new physics

$$m_h \sim m_W \sim m_Z \ll \sqrt{s}$$

$$\implies V(h)_{\rm SM-like} \ll \sqrt{s}$$

Felipe J. Llanes-Estrada (fllanes@ucm.es)

If there is new physics

Seven-parameter EFT description of what's important at LHC with new EWSBS physics

F(h) multiplying Goldstone kinetic term wins at high E

$$\mathcal{L} = \frac{1}{2} \left[\left(1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 \right) \right] \partial_\mu \omega^a \partial^\mu \omega^b \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2} \right) \right]$$

$$+ \frac{4a_4}{v^4} \partial_\mu \omega^a \partial_\nu \omega^a \partial^\mu \omega^b \partial^\nu \omega^b + \frac{4a_5}{v^4} \partial_\mu \omega^a \partial^\mu \omega^a \partial_\nu \omega^b \partial^\nu \omega^b$$

$$+ \frac{1}{2} \partial_\mu h \partial^\mu h + \frac{g}{v^4} (\partial_\mu h \partial^\mu h)^2$$

$$+ \frac{2d}{v^4} \partial_\mu h \partial^\mu h \partial_\nu \omega^a \partial^\nu \omega^a + \frac{2e}{v^4} \partial_\mu h \partial^\nu h \partial^\mu \omega^a \partial_\nu \omega^a.$$

R. L. Delgado, A. Dobado and FJLE, PRD 91, 075017 2015

Special cases

San Diego criterion (geometric: indep. of field coordinates)

Convergence of F(h) expansion in h field space (not usual in experiment)

Problem: for now we have only the first one or two terms

31 / 80

San Diego criterion: symmetric point under custodial group

SMEFT is deployable if and only if (statement about the Lagrangian)

- There is a value $h = h^*$ where $F(h^*) = 0$, and
- F is analytic between our vacuum h = 0 and that point.

Note: The SM has just such point, h = -v ($\Phi = 0$), where $F = (1 + h/v)^2 = 0$

Alonso, Jenkins, Manohar JHEP **08** (2016) 101 Dobado, Espriu Prog.Part.Nucl.Phys. **115** (2020) 103813

Cohen, Craig, Lu, Sutherland JHEP 03 (2021) 237

Current status: vary a from 1

Current status: vary b from a^2

Current status: vary $h^4 WW$ coefficient

35 / 80
Can you produce multiboson final states?

60 years between two such pictures

Can you produce multiboson final states?

60 years between two such pictures

Ongoing project with A.Salas and J. Sanz Cillero at UCM and R. Gómez Ambrosio here at Milano.

Hints welcome

A cute little Lagrangian

2) Some comments in comparing to SM and SMEFT

Systematic uncertainty estimate of IAM

• High energy scattering: $V \ll T$, Feynman diagrams, Madgraph, etc.

00000

• High energy scattering: $V \ll T$, Feynman diagrams, Madgraph, etc.

• Low energy respect to new physics (strongly interacting? $V \sim T$ requires resummation)

Is the LHC a high- or a low- energy machine?

$$T_I(s,t,u) = 16\eta\pi \sum_{J=0}^{\infty} (2J+1)t_{IJ}(s)P_J(\cos\theta_s)$$

Felipe J. Llanes-Estrada (fllanes@ucm.es) HEFT at 1 GeV 40/80

$$T_{I}(s,t,u) = 16\eta\pi \sum_{J=0}^{\infty} (2J+1)t_{IJ}(s)P_{J}(\cos\theta_{s})$$
$$t_{IJ}(s) \simeq \underbrace{t_{0}}_{O(s)} + \underbrace{t_{1}}_{O(s^{2})} + \dots$$

(typical HEFT expansion)

Inverse Amplitude Method

$$rac{1}{t}\simeq rac{1}{t_0+t_1}\simeq rac{1}{t_0}-rac{t_1}{t_0^2} \implies \left| t^{IAM}\simeq rac{t_0^2}{t_0-t_1}
ight|$$

Equivalent to $t_0 + t_1 + o(s^3)$

Felipe J. Llanes-Estrada (fllanes@ucm.es) HEFT at 1 GeV 41/80

Inverse Amplitude Method

$$rac{1}{t}\simeq rac{1}{t_0+t_1}\simeq rac{1}{t_0}-rac{t_1}{t_0^2} \implies \left| t^{IAM}\simeq rac{t_0^2}{t_0-t_1}
ight|$$

Equivalent to $t_0 + t_1 + o(s^3)$

Advantage: for $s > s_{th}$,

$$\operatorname{Im} rac{1}{t_{IJ}(s)} = -\sigma(s) \simeq -1$$

Felipe J. Llanes-Estrada (fllanes@ucm.es) HEFT at 1 GeV

Perturbative vs exact (elastic) unitarity

$\operatorname{Im} t_{IJ}(s) = \sigma(s)|t_{IJ}(s)|^2$

$$\operatorname{Im} t_{IJ}(s) = \sigma(s)|t_{IJ}(s)|^2$$

- Exact in IAM
- Only order by order in EFT

$$\operatorname{Im} t_{1}(s) = \sigma(s)|t_{0}(s)|^{2}$$

Felipe J. Llanes-Estrada (fllanes@ucm.es) HI

Why would anyone care?

Additionally, poor convergence

- Extreme case in NN interactions
- Recent work: Lang, Liebler, Schäfer-Siebert, Zeppenfeld EPJC 81 (2021) 7, 659

Felipe J. Llanes-Estrada (fllanes@ucm.es)

HEFT at 1 GeV

V 43 / 80

Aug 26th 20<u>21</u>

Much used in hadron physics to obtain resonances

(This is an IAM prediction from threshold data, not a fit)

Prediction of resonances from HEFT

LHC bounds on HEFT coeffs \implies bounds on new physics scale

Bottom-to-Top extrapolation

An alternative to predict the scale of new physics is to use Resonance saturation of EFT parameters

LHC diboson resonance bounds at 4 TeV are model dependent;

Within Cillero et al's analysis, 2 TeV still allowed in VBScattering

* Delgado, Dobado, Espriu, Garcia-Garcia, Herrero, Marcano, SC, JHEP 11 (2017) 098, etc.

HEFT at 1 GeV

Felipe J. Llanes-Estrada (fllanes@ucm.es)

- K-matrix (no good analyticity properties)
- N/D method (integral equations, not algebraic)
- Large N method (only approximate for $O(4) \rightarrow O(3)$)
- Inverse Amplitude Method ⇒ control theory uncertainties (this work)

We have provided improved/simplified versions of all methods R. L. Delgado, A. Dobado and FJLE, PRD **91**, 075017 2015; J.Phys.G 41 (2014) 025002.

Similar resonance mass for those with unitarity+analyticity

(Same 0⁺ resonance seen in $\omega\omega \rightarrow \omega\omega$, $hh \rightarrow hh$, $\omega\omega \rightarrow hh$

Similar resonance mass for those with unitarity+analyticity

(Same 0⁺ resonance seen in $\omega\omega \rightarrow \omega\omega$, $hh \rightarrow hh$, $\omega\omega \rightarrow hh$

Can we constrain the uncertainty of one method ab initio?

Felipe J. Llanes-Estrada (fllanes@ucm.es) HEFT at 1 GeV 48/80

A cute little Lagrangian

2 Some comments in comparing to SM and SMEFT

3) Unitarization of two-body VV
ightarrow VV scattering

Use its dispersive derivation: 2010.13709

Master formula is a dispersion relation for
$$G(s)\equivrac{t_0^2(s)}{t(s)}$$

$$G(s) = G(0) + G'(0)s + \frac{1}{2}G''(0)s^{2} + PC(G) + \frac{s^{3}}{\pi} \int_{RC} ds' \frac{\operatorname{Im} G(s')}{s'^{3}(s'-s)} + \frac{s^{3}}{\pi} \int_{LC} ds' \frac{\operatorname{Im} G(s')}{s'^{3}(s'-s)}$$

Felipe J. Llanes-Estrada (fllanes@ucm.es) HEFT at 1 GeV

Dispersion relation: approximations

Gives
$$t \simeq t_0^2/(t_0 - t_1) = t_{IAM}$$
.

Sources of uncertainty

 Neglected pole contributions of t⁻¹: subthreshold Adler zeroes and CDD zeroes of t.

• Inelasticities due to KK (hh in HEFT), 4ω , etc.

• $\mathcal{O}(p^4)$ truncation of subtraction constants.

• Left cut approximation Im G $\simeq -Im t_1$.

$$egin{array}{rcl} \mathcal{L} &=& rac{1}{2}(
u+h)^2(\partial_\muec u)^2 \ &+& rac{1}{2}(\partial_\mu h)^2+\dots \end{array}$$

In terms of three Goldstone bosons $\vec{\omega}$ and Higgs *h* fields

$$\mathcal{L} = \frac{1}{2} (v+h)^2 A \left(\frac{(v+h)^2}{\Lambda^2} \right) (\partial_\mu \vec{\omega})^2 + \frac{1}{2} \left(1 + C \left(\frac{(v+h)^2}{\Lambda^2} \right) \right) (\partial_\mu h)^2 + \dots$$

. . .

$$A(0) = 1, C(0) = 0$$

Felipe J. Llanes-Estrada (fllanes@ucm.es)

HEFT at 1 GeV

55 / 80

Aug 26th 2021 55 / 80

イロト イヨト イヨト

2

(n.b. field redefinition shows $SMEFT \subset HEFT$)

If different symmetry breaking pattern... still field theory

HEFT at 1 GeV

But S-matrix theory more general

Basic particle concepts part of S-matrix theory

Dispersion relations, partial-wave expansions, resonances, elasticities...

Felipe J. Llanes-Estrada (fllanes@ucm.es)

HEFT at 1 GeV

S-matrix too general: ambiguous \implies HEFT input

Felipe J. Llanes-Estrada (fllanes@ucm.es)

HEFT at 1 GeV

More predictive Inverse Amplitude Method

Felipe J. Llanes-Estrada (fllanes@ucm.es)

HEFT at 1 GeV

Adler zeroes of t near threshold

$$t_0 + t_1 = a + bs + cs^2$$

vanishes near
$$s = -a/b$$

Felipe J. Llanes-Estrada (fllanes@ucm.es)

HEFT at 1 GeV

62 / 80

Aug 26th 2021 62

Tiny uncertainty in resonance region because at/below threshold

Tiny uncertainty in resonance region because at/below threshold

Uncertainty	Behavior	Displacement $\sqrt{s} = m_{ ho}$	improvable?
Adler zeroes of t	$(m_\omega/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM

0712.2763

CDD poles (t = 0 in resonance region: new physics)

CDD poles (t = 0 in resonance region: new physics)

Can affect a resonance calculation dramatically

Need to

CDD poles (t = 0 in resonance region: new physics)

Can affect a resonance calculation dramatically

Need to • Check for CDD pole appearance: $t_0(s_C) + \operatorname{Re} t_1(s_C) = 0$

Felipe J. Llanes-Estrada (fllanes@ucm.es) HEFT at 1 GeV Can affect a resonance calculation dramatically

Need to

Check for CDD pole appearance: t₀(s_C) + Ret₁(s_C) = 0
If present, modify

$$t_{\text{IAM}} = \frac{t_0^2}{t_0 - t_1} \to \frac{t_0^2}{t_0 - t_1 + \frac{s}{s - s_c} \text{Re}(t_1)}$$

CDD poles (t = 0 in resonance region: new physics)

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_{R}^{2}/M_{0}^{2}	$0-\mathcal{O}(1)$	Yes

Inelastic 2-body channels

Felipe J. Llanes-Estrada (fllanes@ucm.es) HEFT at 1 GeV 67/80

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \Big(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi \to K\bar{K}}|^2}{|t_{\pi\pi \to \pi\pi}|^2} \Big)$$

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \Big(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi \to K\bar{K}}|^2}{|t_{\pi\pi \to \pi\pi}|^2} \Big)$$

68 / 80

suppressed by phase-space $rac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}}$ and low inelasticity in $t_{\pi\pi\to K\bar{K}}$

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \Big(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi \to K\bar{K}}|^2}{|t_{\pi\pi \to \pi\pi}|^2} \Big)$$

suppressed by phase-space $\frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}}$ and low inelasticity in $t_{\pi\pi\to K\bar{K}}$ • In HEFT only inelasticity in $\omega\omega - hh$ (actually zero in SM)

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \Big(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi \to K\bar{K}}|^2}{|t_{\pi\pi \to \pi\pi}|^2} \Big)$$

suppressed by phase-space $\frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}}$ and low inelasticity in $t_{\pi\pi\to K\bar{K}}$

- In HEFT only inelasticity in $\omega\omega hh$ (actually zero in SM)
- We can use the coupled channel IAM directly or to estimate uncertainty in elastic IAM

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_R^2/M_0^2	$0-\mathcal{O}(1)$	Yes
Inelastic 2-body	$(m_ ho/f_\pi)^4$	10 ⁻³	Yes

Inelastic 4-body channels

 Difference with SMEFT: here, in ChPT or HEFT, additional particles *not* suppressed by the chiral counting. But phase space helps.

Inelastic 4-body channels

In hadron physics, (with elastic and 4- π inelastic amplitudes taken as similar)

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_R^2/M_0^2	$0-\mathcal{O}(1)$	Yes
Inelastic 2-body	$(m_{ ho}/f_{\pi})^4$	10 ⁻³	Yes
Inelastic 4-body	$(m_ ho/f_\pi)^8$	10^{-4}	Partly

$O(p^4)$ truncation

Estimate based on size of NNLO counterterms (\implies subtraction constants) from Resonance Effective Field Theory

= 990

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_R^2/M_0^2	$0-\mathcal{O}(1)$	Yes
Inelastic 2-body	$(m_{ ho}/f_{\pi})^4$	10^{-3}	Yes
Inelastic 4-body	$(m_ ho/f_\pi)^8$	10^{-4}	Partly
$O(p^4)$ truncation	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-2}	Yes

$$G(s) = rac{t_0^2}{t} \simeq t_0 - t_1 - rac{t_2}{t_2} + rac{t_1^2}{t_0}$$

■ のへで

Approximate left cut

Need to check $\int_{LC} ds' \frac{\operatorname{Im} G + \operatorname{Im} t_1}{s'^3(s' - s)} \, .$ *i.e.*, failure of IAM's $Im \ G = -Im \ t_1$ over the left cut Split interval in 3:

- Low-|s| (ChPT/HEFT \checkmark) $|s|^{\frac{1}{2}} < 470 \text{MeV}.$
- Intermediate-|s|: Match to ChPT + natural-size counterterm + LC parameterizations from GKPY eqns.
- High -|s|: Sugawara-Kanazawa relates it to right cut: Regge asymptotics there. Far from RC anyway.

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes
CDD poles at M_0	M_{R}^{2}/M_{0}^{2}	0 - O(1)	Yes
Inelastic 2-body	$(m_ ho/f_\pi)^4$	10^{-3}	Yes
Inelastic 4body	$(m_ ho/f_\pi))^8$	10^{-4}	Partly
$O(p^4)$ truncation	$(\sqrt{s}/(4\pi f_\pi))^4$	10^{-2}	Yes
Left Cut	$(m_ ho/f_\pi)^6$	0.17	Partly

Use EFT for eventual $V_L V_L$ high-E data: but if your Lagrangian has > 7 parameters, little breeches, you are working too hard

maged by Heritage Auctions, HA.com

• It often fails little above threshold $s\simeq 4m^2+\epsilon$

æ

- It often fails little above threshold $s\simeq 4m^2+\epsilon$
- Inverse Amplitude Method extends it to first resonance or $4\pi F$ or new: first zero (CDD-IAM). No clipping, no unitarity problem.

- It often fails little above threshold $s\simeq 4m^2+\epsilon$
- Inverse Amplitude Method extends it to first resonance or $4\pi F$ or new: first zero (CDD-IAM). No clipping, no unitarity problem.
- We have laid out Alex Salas-Bernárdez et al. (SciPost 2021) its systematic theory uncertainties

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093; grants MINECO:FPA2016-75654-C2-1-P, FPA2016-77313-P MICINN: PID2019-108655GB-I00, PID2019-106080GB-C21, PID2019-106080GB-C22 (Spain); UCM research group 910309 and the IPARCOS institute; and the VBSCAN COST action CA16108.

