
Multi Boson Interaction conference

Milano Bicocca, 23-27 August 2021

Chiara Mariotti

Thanks!

Thanks to Pietro Govoni and the organising commettee for this amazing invitation!

With Pietro we did start the VBF/S adventure in CMS ~15-20 years ago:

VBF Z: arXiv:1001.4357

VBS W+W+ : Eur. Phys. J. C71: 1514, 2011.

.... and many more

today he is one of the leader of the field.

Congratulations!

To all the speakers for the very nice talks, the very interesting results and discussions → I will try to report your main message

Apologies for mistakes and oversights ...

Precision physics and new physics at LHC via MBI

- The first production of di-bosons at LEP!
- Why MBI?

- Theory progress
- Experimental results
- The future

The SM: a long journey

- 54 Yang & Mills
- 61 Glashow
- 64 Brout, Englert, Higgs et al
- 67-68 Glashow, Weinberg and Salam
- 70 't Hooft et Veltman
- 73 Gargamelle: discovery of the week neutral current
- 83 Ua1 & UA2: W and Z discovery
- 89-2000: LEP and HERA: the triumph of the SM
- 95 Tevatron: top quark discovery
- 2012 LHC: discovery the Higgs boson

The SM: a long journey

54 Yang & Mills61 Glashow

As Gödel's incompleteness theorems say: you cannot get an ultimate answer, since every answer creates automatically a new question.

Yariv Friedman (Geneva film director) rephrased it:

"the act of discovery is basically what creates the unknown"

95 Tevatron: top quark discovery

2012 LHC: discovery the Higgs boson

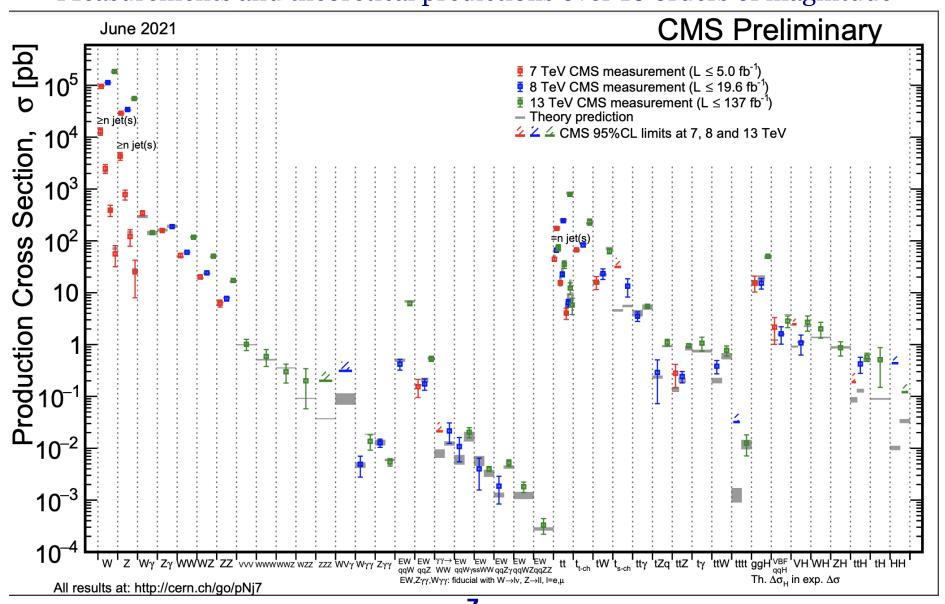
The SM: a long journey

54 Yang & Mills61 Glashow

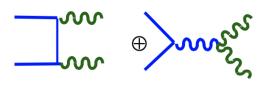
As Gödel's incompleteness theorems say: you cannot get an ultimate answer, since every answer creates automatically a new question.

Yariv Friedman (Geneva film director) rephrased it:

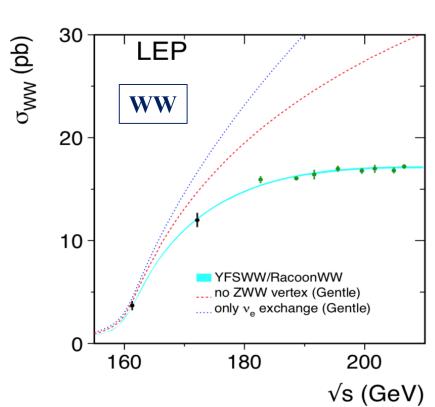
"the act of discovery is basically what creates the unknown"

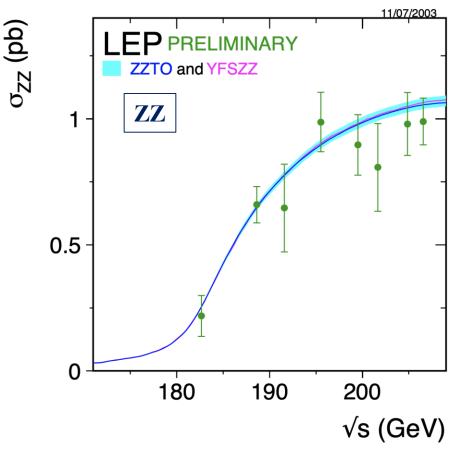

95 Tevatron: top quark discovery

2012 LHC: discovery the Higgs boson


→ precision measurements, search for new physics

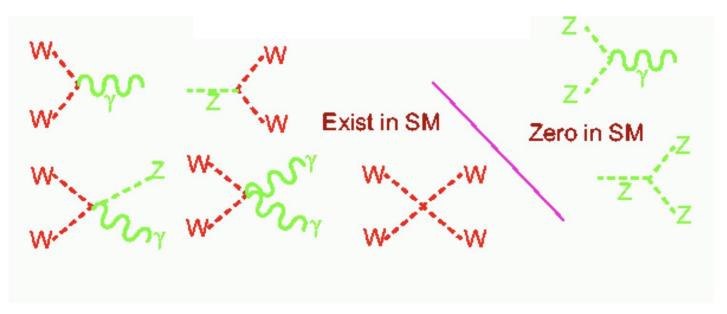
The SM as of today at LHC


Measurements and theoretical predictions over 10 orders of magnitude



Going back to the beginning of MBI

4 fermions cross sections


~40000 WW events at LEP

MANY theoretical progress on $O(\alpha)$. Rad.Corr. modify the kinem. distributions (mass,boost...) and give a global -1.5% shift in $\sigma(WW)$ All 5 final states are measured: qqqq,qqll,qqnn,llvv,llll

DELPHI measures also Zv* cross section.

Going back to the beginning of MBI at LEP

Triple and quartic gauge couplings

TGC AND QGC are determined by the gauge structure of the theory: SU(2) is a NON abelian theory: the gauge bosons interact between them U(1) is abelian: photons do not have TGC.

Many measurements, no deviations observed within the large uncertainties

Why multiboson interaction?

Validation of perturbative calculations

Test of the non-abelian structure of Electroweak Theory

→ TGC and QGC

Vector Boson Scattering:

- unitarity preserved via Higgs contributions (if not rise of V_LV_L)
- test gauge structure of EW interactions, having tree-level sensitivity to quartic gauge couplings (QGC). Moreover the quartic interactions and their interplay with trilinear couplings lead to potentially large gauge cancellations
- couplings between the Higgs and gauge bosons at the same time, at energy scales which sensibly differ from the Higgs mass

Searches for new resonances/gauge bosons (via the rise of V_LV_L)

Search for new physics with EFT

Experimentally very challengy

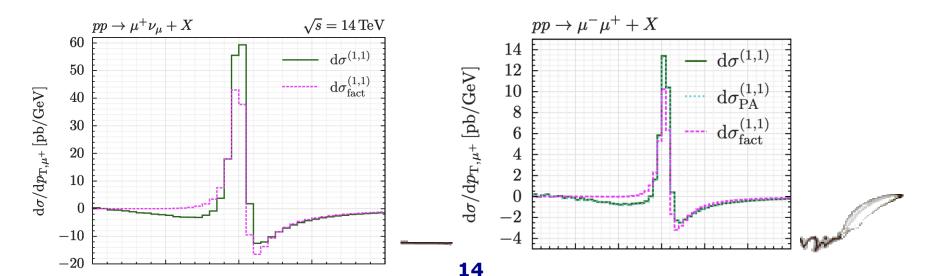
Di-Bosons

12

Progress in theory

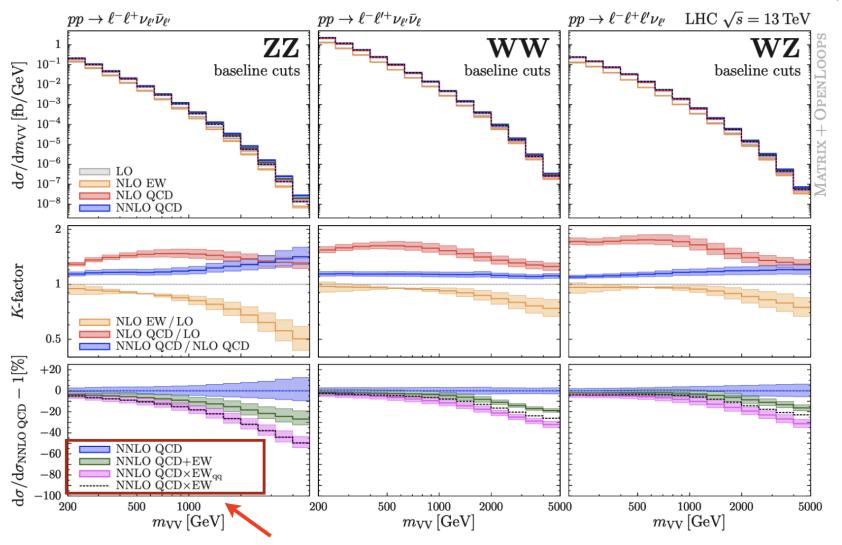
→Theory precision is key to harness full potential of LHC data!

13


Jonas Lindert

QCD and EW corrections to V, VV

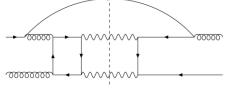
Drell -Yan: NNLO QCD + NLO EW


Massimiliano Grazzini

- mixed EW+QCD $\mathfrak{O}(\alpha_s\alpha)$ correction complete for neutral current and complete for charged current except for bottleneck 2 loop virtual amplitude ->Pole Approximation used
 - The mixed corrections to the muon p_T distribution are negative and at $p_T = 500$ GeV they amount to -20% (-15%) in the charged current (neutral current) case
 - Neutral current: the impact of the mixed corrections up to invariant masses of 1 TeV is about -1.5% with respect to the NLO QCD result

NNLO QCD+NLO EW for dibosons

Kallweit, Lindert, Pozzorini, Wiesemann, MG (2019)


Different combination prescriptions

Massimiliano Grazzini

MATRIX V2.0

		<u>-</u>
process	description	
$pp/p\bar{p} o H$	on-shell Higgs-boson production	
$pp/par{p} o Z$	on-shell Z production (EW)	
$pp/par{p} o W^-$	on-shell W^- production with CKM	
$pp/par{p} o W^+$	on-shell W^+ production with CKM	
$pp/p\bar{p} \rightarrow e^-e^+$	Z production with decay (EW)	
$pp/par{p} ightarrow u_e ar{ u}_e$	Z production with decay $\overline{(EW)}$	
$pp/p\bar{p} \to e^-\bar{\nu}_e$	W^- production with decay and CKM (EW)	
$pp/p\bar{p} \rightarrow e^+\nu_e$	W^+ production with decay and CKM $\overline{({ m EW})}$	
$pp/par{p} o \gamma\gamma$	$\gamma\gamma$ production	. MI O FU
$pp/p\bar{p} o e^-e^+\gamma$	$Z\gamma$ production with decay	
$pp/par{p} ightarrow u_e ar{ u}_e \gamma$	$Z\gamma$ production with decay all the single	
$pp/p\bar{p} o e^- \bar{\nu}_e \gamma$	$W^{-}\gamma$ with decay diboson process	esses
$pp/p\bar{p} o e^+ u_e \gamma$	$W^+\gamma$ with decay NLO QC	D for loop
$pp/par{p} o ZZ$	on-shell ZZ production induced g	g contribution
$pp/par{p} o W^+W^-$	on-shell W^+W^- production for WW a	and ZZ
$pp/p\bar{p} \rightarrow e^-\mu^-e^+\mu^+$	ZZ production with decay $(ggNLO, EW)$	
$pp/p\bar{p} \rightarrow e^-e^-e^+e^+$	ZZ production with decay $\overline{(gg\text{NLO, EW)}}$	MUNICH
$pp/p\bar{p} \to e^-e^+\nu_\mu\bar{\nu}_\mu$	ZZ production with decay $(ggNLO, EW)$	S. Kallweit
$pp/p\bar{p} \to e^- \mu^+ \nu_\mu \bar{\nu}_e$	W^+W^- production with decay (ggNLO, EW)	
$pp/p\bar{p} \rightarrow e^-e^+\nu_e\bar{\nu}_e$	ZZ / W^+W^- production with decay (ggNLO, E	W
$pp/p\bar{p} \rightarrow e^-\mu^-e^+\bar{\nu}_\mu$	W^-Z production with decay (EW)	NNLO
$pp/p\bar{p} \rightarrow e^-e^-e^+\bar{\nu}_e$	W^-Z production with decay (EW)	(+NNLL)
$pp/p\bar{p} \to e^-e^+\mu^+\nu_\mu$	W^+Z production with decay (EW)	(TIVIVEE)
$pp/p\bar{p} \rightarrow e^-e^+e^+\nu_e$	W^+Z production with decay $\overline{\rm (EW)}$	

Already at NNLO the two production channels mix

We combine both calculations in MATRIX

MUNICH

NLO EW for

Reference: arXiv:1711.06631

Nov 2017

Munich -- the MUlti-chaNnel Integrator at swiss (CH) precision --Automates qT-subtraction and Resummation to Integrate X-sections

q_{T} **Subtraction**

S. Catani and M. Grazzini (2007)

OpenLoops

- F. Cascioli, P. Maierhöfer and S. Pozzorini
- F. Cascioli, J. Lindert, P. Maierhöfer and S. Pozzorini (2014)
- F. Buccioni, S. Pozzorini, M. Zoller (2018)

TDHPL T. Gehrmann and E. Remiddi

VVAMP T. Gehrmann, A. von

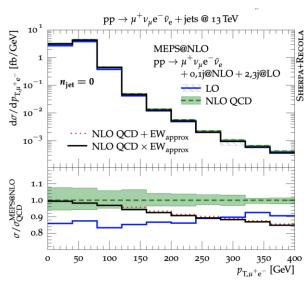
Manteuffel, L. Tancredi (2015)

GINaC c. Bauer, A. Frink and R. Kreckel

EW corrections to V, VV

Jonas Lindert

 Many exciting new results for EW corrections to MBI processes pushing theory precision to the O(1-10%) level


VV

In MC: aMC@NLO, POWHEG, Sherpa, MATRIX, ...

- NNLO QCD + NLO EW available in MATRIX+OpenLoops for all massive VV processes: largest uncertainty at large energies from NNLO QCD-EW
- NLO QCD + EW for polarised VV: at inclusive level universal correction, but non-universalities at differential level
- NLO (QCD + EW) + PS (QCD + QED) for VV available in POWHEG: resonance-aware matching available at NLO EW.

V+jets / VV+jets

- QCD and EW processes formally overlap at NLO
- very rich phenomenology
- EW corrections become dominant in VBF/VBS phase-space

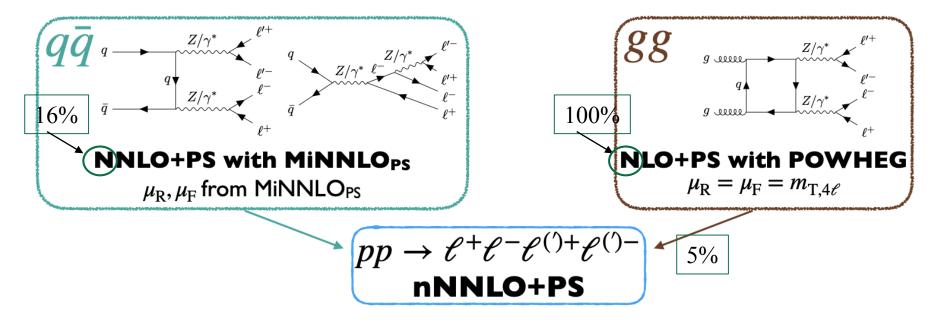
Simone Alioli

GENEVA MC at NNLL

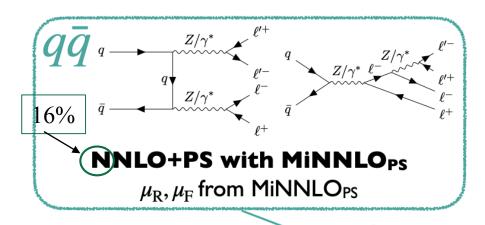
Introduction

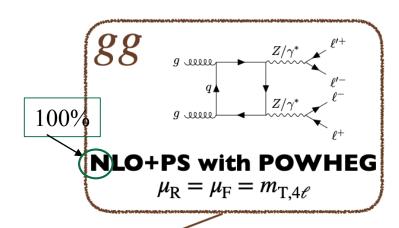
GENEVA combines the 3 theoretical tools we use for QCD predictions into a single framework:

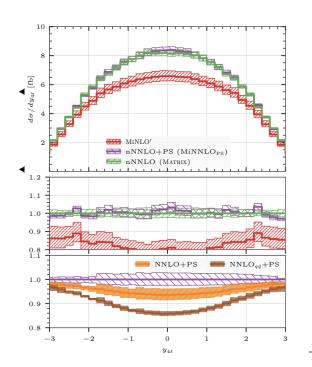
- 1) Fully differential fixed-order calculations
 - up to NNLO via N-jettiness or q_T -subtraction
- 2) Higher-logarithmic resummation
 - up to NNLL' or N3LL via SCET or RadISH
- 3) Parton showering, hadronization and MPI
 - recycling standard SMC. Using PYTHIA8 now, any SMC supporting LHEF and user-hook vetoes is OK

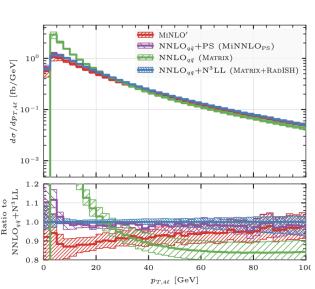

Resulting Monte Carlo event generator has many advantages:

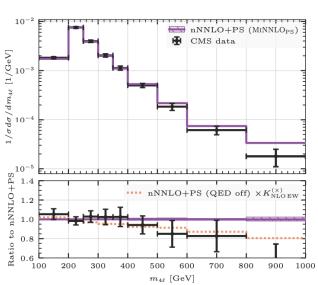
- consistently improves perturbative accuracy away from FO regions
- provides event-by-event systematic estimate of theoretical perturbative uncertainties and correlations
- gives a direct interface to SMC hadronization, MPI modeling and detector simulations.




MINNLO_{PS}

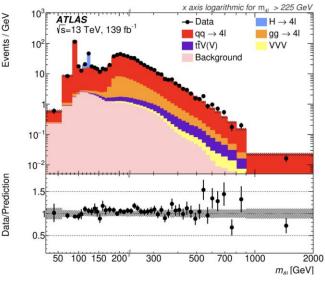

- → all (non-)resonant topologies included spin correlations, interferences and off-shell effects accounted for
- → implementation in POWHEG-BOX-RES & interface to MATRIX [Lombardi, Wiesemann, Zanderighi '20]


MINNLO_{PS}

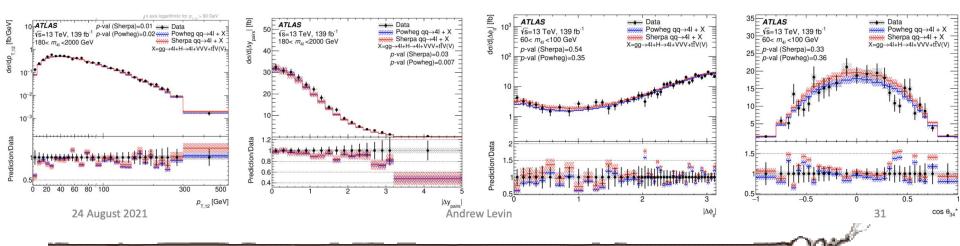

5%

 $pp \to \ell^+ \ell^- \ell^{(\prime)} + \ell^{(\prime)}$

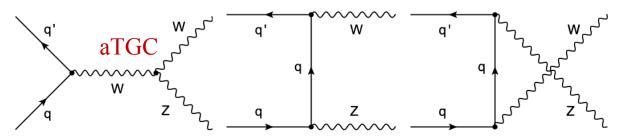

nNNLO+PS



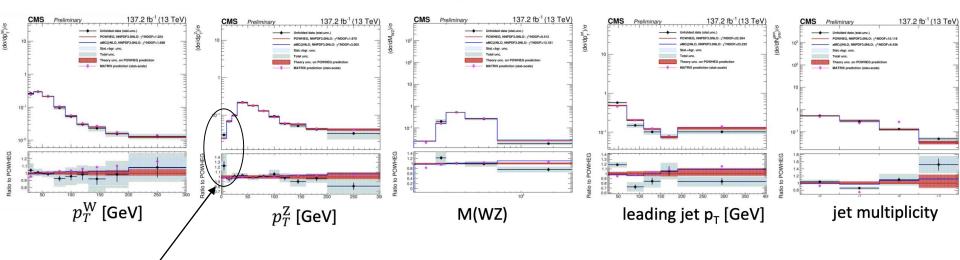
Andrew Levin


4l final state

ZZ / 4leptons differential cross section



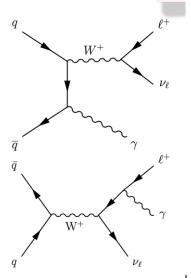
• Generally good agreement found for all observables, except $|\Delta y_{pairs}|$, where Powheg and Sherpa badly underpredict the yield in the highest bin

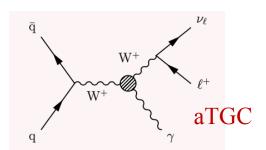

Andrew Levin

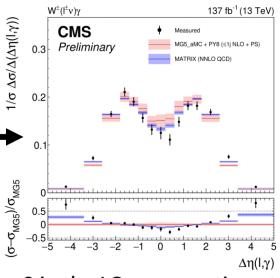
WZ cross section

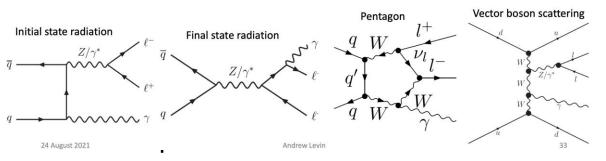
TOTAL XS: agreement with Matrix at NNLO QCD + NLO EW

• Generally good agreement for $p_T^{
m W}$, $p_T^{
m Z}$, and M(WZ)

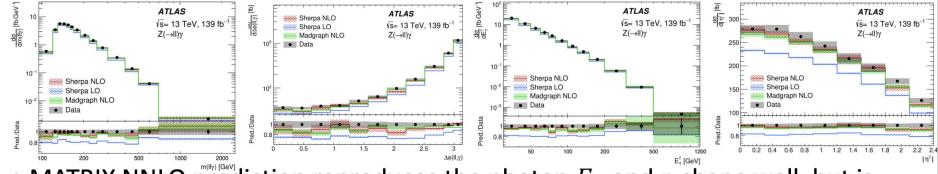


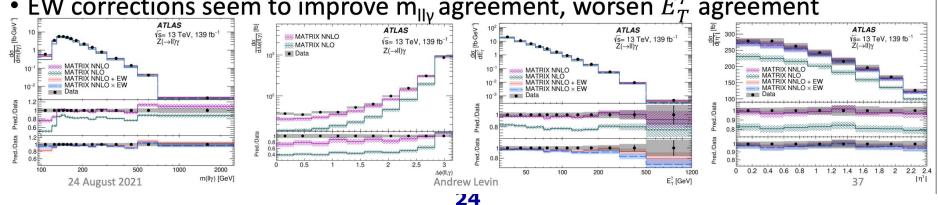

Suggestion: try to compare with <u>Matrix+Radish</u> to see if the discrepancy at


low pT is understandable by resummation effects.



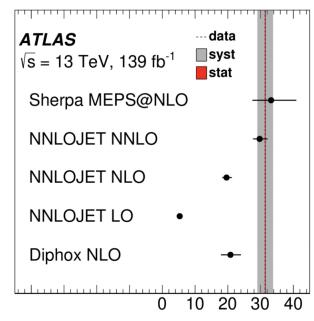
- Phenomenon called radiation amplitude zero: a 0 in the LO cross section at $\Delta \eta(I,\gamma) = 0$
- Clear preference for MATRIX at higher photon p_T and higher $\Delta R(I, \gamma)$
- Neither MATRIX nor MG5_aMC predicts well the jet multiplicity distribution
- Slight mismodeling of peak in $m_T^{
 m cluster}$ (transverse mass of the lvy) distribution




Total XS in good agreement with MATRIX

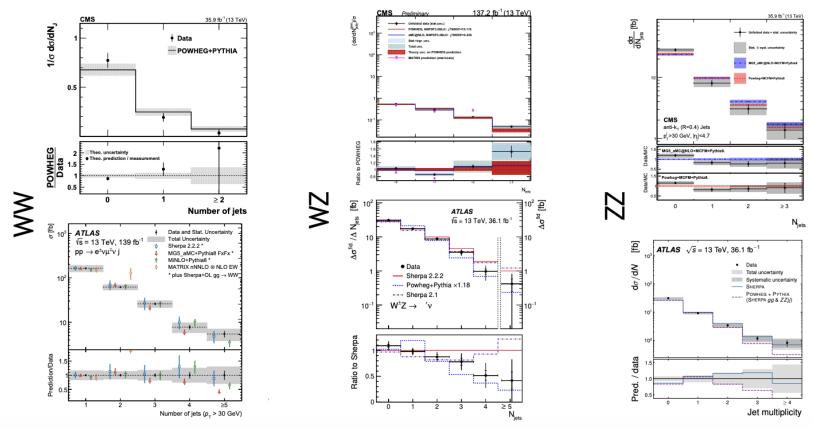
Sherpa NLO and Madgraph NLO reproduce results within statistical uncertainties

MATRIX NNLO prediction reproduces the photon E_T and η shape well, but is somewhat off for other variables

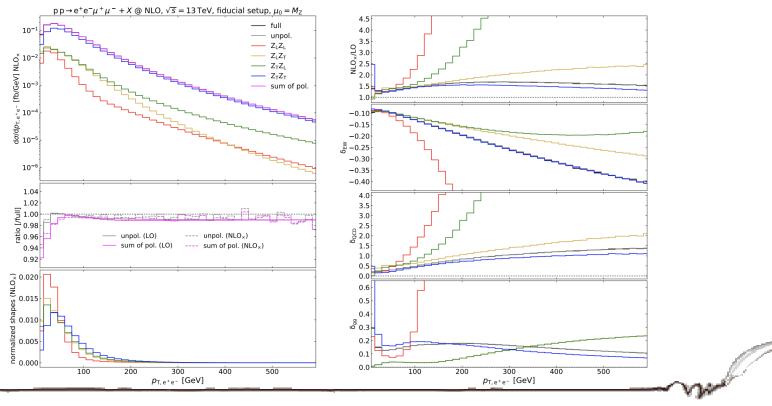

<u>EW corrections seem</u> to improve m_{llv} agreement, worsen E_T^{γ} agreement

ATLAS: γγ cross section (VI)

- Inclusive cross section based on integral of p_{T,γ_2} differential cross section (consistent if other variables are used instead of p_{T,γ_2})
- NNLOJET NNLO and Sherpa MEPS@NLO both predict inclusive cross section well
- LO cross section is almost a factor of 6 too low!
- Statistical component of uncertainty almost negligible


Integrated fiducial cross section [pb]

- ► Large Run 2 dataset, advanced analysis techniques, and precise theoretical prediction enable precision studies of *VV*+jets
- CMS and ATLAS both published measurements of jets in WW, WZ, and ZZ production
- Good agreement with NLO QCD predictions of VV+jet production



Studies on polarized VV

Giovanni Pelliccioli

Important: the definition of the frame. Best is the VV Center-of-Mass the V boson are on-shell the cuts on the leptons affect the interference terms

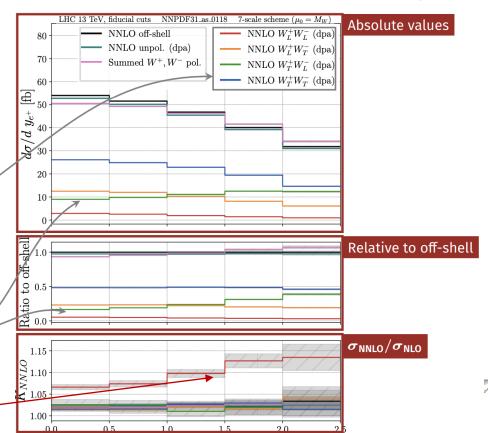
NLO to VV: large effect (+45% QCD, -11 % EW ...)
expecially on Longitudinal polarization, with kinematic dependence

NNLO for polarized VV production

Calculation for on-shell W

Andrei Popescu

- NNLO corrections are important to reduce theory uncertainty, and are well-behaved.
- QCD corrections are polarisation dependent and are particularly strong for $W_L^+ W_L^-$ setup.
- · Loop-induced channel has a significant effect on both on results and scale uncertainty.

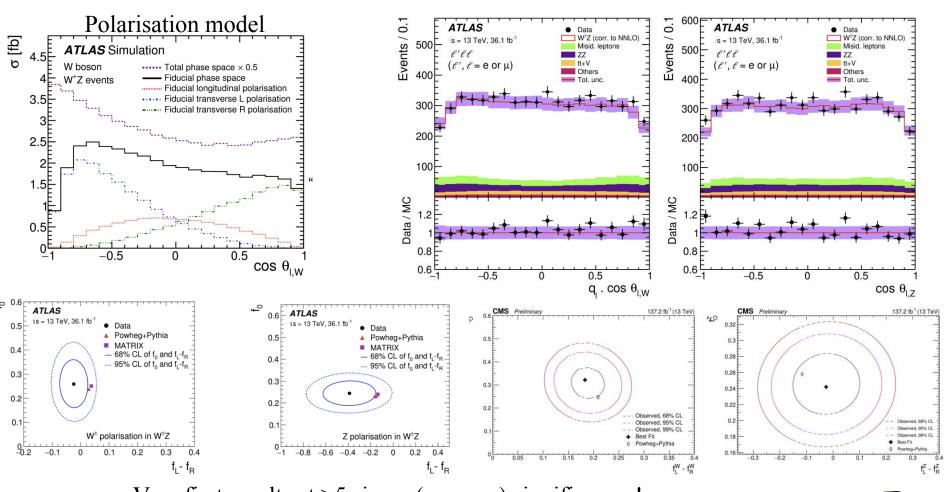

Unpolarised setups:

- DPA vs off-shell shows non-resonant background
- Polarisation sum vs DPA shows interference effects

Doubly-polarised setups:

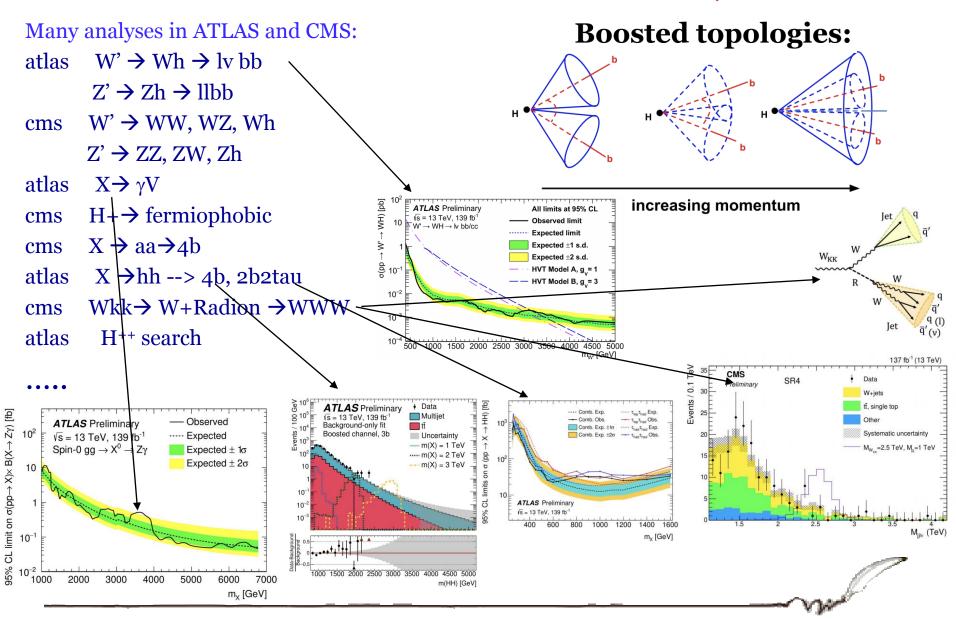
- Individual polarisation setup shape
- Relative contribution of each setup

 Rising K-factor for LL setup corrections – different from other polarisations



 y_{e^+}

First observation of V Polarization in WZ

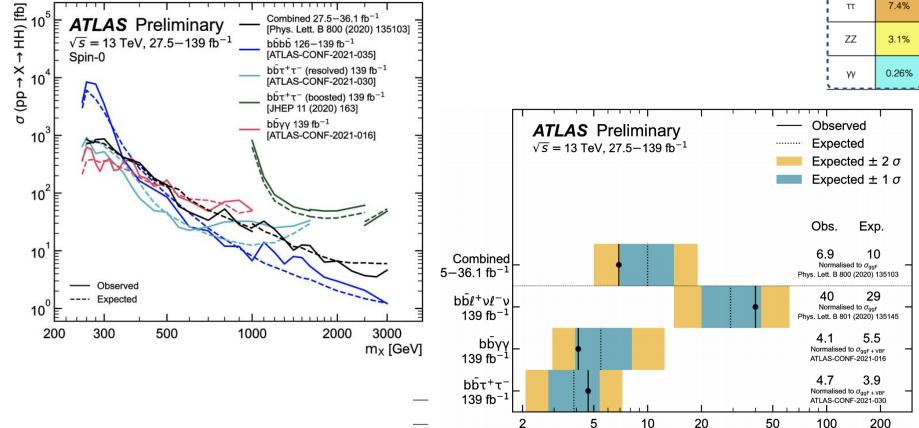

Carlo Francisco Erice Cid

Reference frame to be defined - not the same in Atlas and CMS

Very first results at >5 sigma (or more) significance! But statistically limited at Run2 and it will be as well for the Run3

Search for resonances in VV,VH

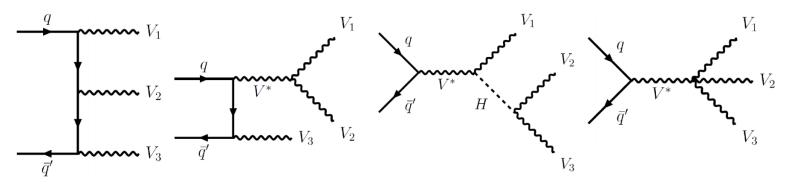
HH search


Viviana Cavaliere

Dominik Duka

Resonant

and non resonant



Analyses with Run2 data have sensitivity expected with HL-LHC!

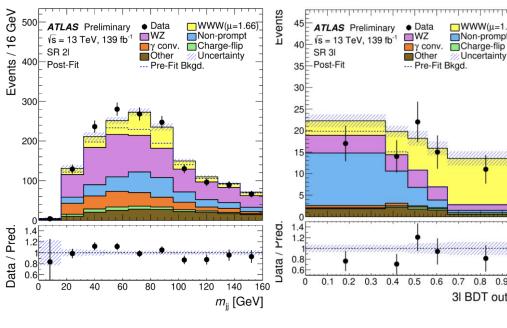
95% CL upper limit on σ (pp \rightarrow HH) normalised to σ_{SM}

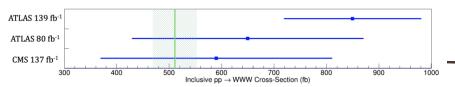
Direct measurement of gauge boson self-coupling and precision test of SM

- Finely balanced cancellations between QGC, TGC, Higgs amplitudes is needed to preserve unitarity at high CM energies.
- Any anomalous HVV, QGC and TGC coupling can disturb the balance and create large cross-sections at high energies.

/// Uncertainty

3I BDT output


WWW Atlas

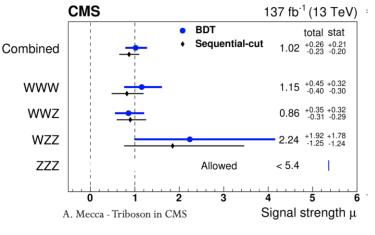

Avoids SM processes that pair produce oppositely charged leptons

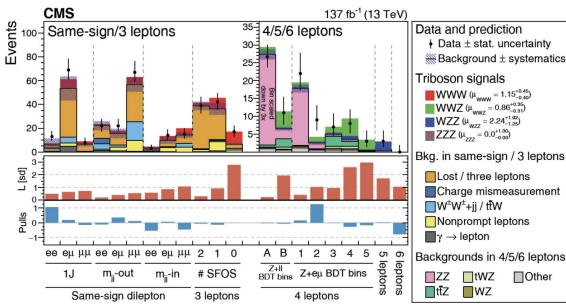
	Detector Signatures			
$W^{\pm}W^{\pm}W^{\mp} \rightarrow 2l2\nu2j$	$e^{\pm}e^{\pm}jj + E_T^{miss}$	e±μ±jj -	$+ E_T^{miss}$	$\mu^{\pm}\mu^{\pm}jj + E_T^{miss}$
$W^{\pm}W^{\pm}W^{\mp}\rightarrow 313v$	$e^{\pm}e^{\pm}\mu^{\mp}+E_T^{miss}$		$\mu^{\pm} \mu^{\pm} e^{\mp} + E_T^{miss}$	

	$e^{\pm} e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	3ℓ
WWW	29.3 ± 4.4	128 ± 19	84 ± 12	35.8 ± 5.2
WZ	80.6 ± 5.7	344 ± 22	171 ± 10	16.4 ± 1.4
Charge-flip	30.3 ± 7.2	18.8 ± 4.5	_	1.7 ± 0.4
γ conversions	62.1 ± 8.7	142 ± 15	_	1.5 ± 0.1
Non-prompt	16.6 ± 4.1	138 ± 24	98 ± 21	26.3 ± 2.9
Other	22.8 ± 3.7	102 ± 15	59.7 ± 9.0	8.0 ± 0.9
Total predicted	242 ± 11	872 ± 22	414 ± 17	89.7 ± 5.4
Data	242	885	418	79

Analysis	μ	σ [pb]	Reference
ATLAS @ 139fb ⁻¹	1.66 ± 0.28	0.85 ± 0.13	CDS
ATLAS @ $80 \mathrm{fb}^{-1}$	1.29 ± 0.44	0.65 ± 0.22	Physics Let. B. 2019
CMS @ $137 { m fb}^{-1}$	1.15 ± 0.45	0.59 ± 0.22	Physics Rev. L. 2020

Alberto Mecca

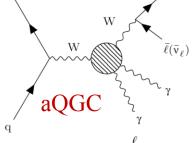

Other

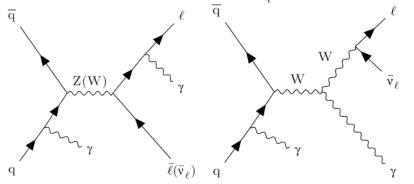

VVV in CMS

Process	Theoretical cross section (NLO)	$\sigma_{ ext{TOT}} \mathbf{x}$ BR	Expected events for 137 fb ⁻¹
WWW	509 fb	54.0 fb*	7 400
WWZ	354 fb	4.12 fb	560
WZZ	91.6 fb	0.36 fb	50
ZZZ	37.1 fb	0.05 fb	6.9

- $W^{\pm}W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\ell^{\pm} 2\nu q\bar{q}'$
- $W^{\pm}W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\ell^{\pm}\ell^{\mp} 3\nu$
- $W^{\pm}W^{\mp}Z \rightarrow \ell^{\pm}\ell^{\mp} 2\nu \ell^{\pm}\ell^{\mp}$
- W $^{\pm}$ ZZ $\rightarrow \ell^{\pm} \nu 2(\ell^{\pm}\ell^{\mp})$
- $ZZZ \rightarrow 3(\ell^{\pm}\ell^{\mp})$

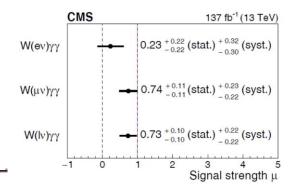
- 2 charged leptons
- 3 charged leptons
- 4 charged leptons
- 5 charged leptons
- 6 charged leptons

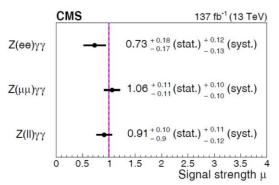




Vyy in CMS

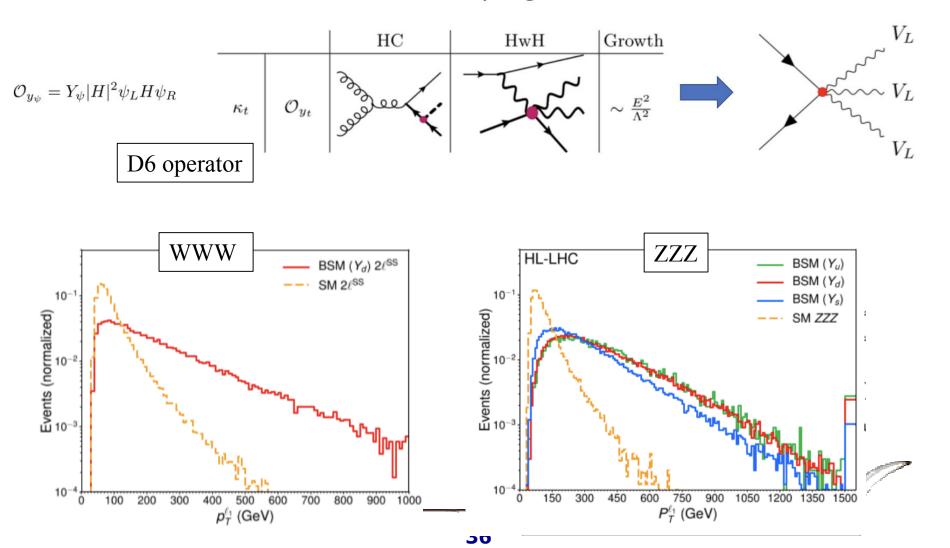
Wyy and Zyy at 13 TeV a

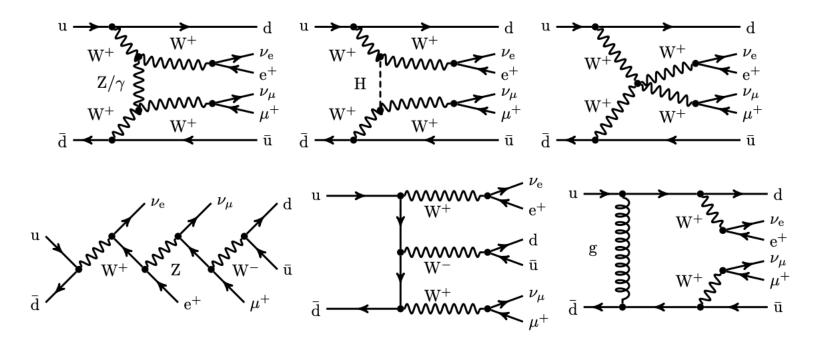

Process	Theo. Cross section (NLO)	
Wγγ	2 000 fb	
Ζγγ	680 fb	



aQGC Limits				
	$ m W\gamma\gamma~(TeV^{-4})$		$\mathrm{Z}\gamma\gamma$ (TeV $^{-4}$)	
Parameter	Expected	Observed	Expected	Observed
$f_{\rm M2}/\Lambda^4$	[-57.3, 57.1]	[-39.9, 39.5]	_	_
$f_{\mathrm{M3}}/\Lambda^4$	[-91.8, 92.6]	[-63.8, 65.0]	_	_
$f_{\rm T0}/\Lambda^4$	[-1.86, 1.86]	[-1.30, 1.30]	[-4.86, 4.66]	[-5.70, 5.46]
$f_{\rm T1}/\Lambda^4$	[-2.38, 2.38]	[-1.70, 1.66]	[-4.86, 4.66]	[-5.70, 5.46]
$f_{\rm T2}/\Lambda^4$	[-5.16, 5.16]	[-3.64, 3.64]	[-9.72, 9.32]	[-11.4, 10.9]
$f_{\mathrm{T5}}/\Lambda^4$	[-0.76, 0.84]	[-0.52, 0.60]	[-2.44, 2.52]	[-2.92, 2.92]
$f_{\mathrm{T6}}/\Lambda^4$	[-0.92, 1.00]	[-0.60, 0.68]	[-3.24, 3.24]	[-3.80, 3.88]
$f_{\rm T7}/\Lambda^4$	[-1.64, 1.72]	[-1.16, 1.16]	[-6.68, 6.60]	[-7.88, 7.72]
$f_{\rm T8}/\Lambda^4$	_	_	[-0.90, 0.94]	[-1.06, 1.10]
$f_{\rm T9}/\Lambda^4$	_	_	[-1.54, 1.54]	[-1.82, 1.82]

- $\sigma(W\gamma\gamma)_{SR} = 13.6^{+1.9}_{-1.9} \text{ (stat) } ^{+4.0}_{-4.0} \text{ (syst) } \pm 0.08 \text{ (PDF+scale) fb}$
- $\sigma(Z\gamma\gamma)_{SR} = 5.41^{+0.58}_{-0.55} \text{ (stat) } ^{+0.64}_{-0.70} \text{(syst)} \pm 0.06 \text{ (PDF+scale) fb}$

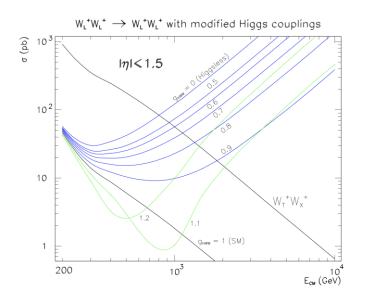



Tribosons to constrain light-Yukawa

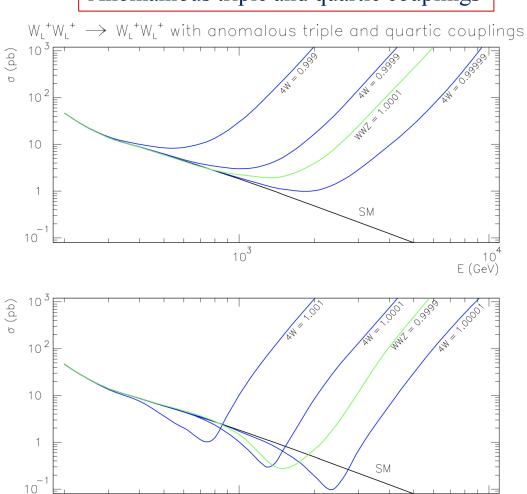
Tevong You

• Triboson final state for Yukawa couplings

VBS


These diagrams must be computed all together, since the "VBS" alone are not gauge invariant and the interference with the other diagrams is huge and negative.

→ very small cross section for the EW process.


VBS

If the cancellation of the Higgs diagrams is not complete, then we expect a g_{hWW} coupling smaller than the SM. The W_LW_L will keep growing with \sqrt{s} , up to the the new resonance, or more generaly to the new physics scale Λ .

Michael Szleper https://arxiv.org/pdf/1412.8367.pdf

Anomanlous triple and quartic couplings

10[°] E (GeV)

NLO QCD and EW in VBF

NLO QCD for leptonic final states -> VBFNLO, Madgraph NLO –EW recently calculated for W+W+, WZ, ZZ (on going for W+W-) ~ - 16%

All diagrams - on going (done for W+W+)

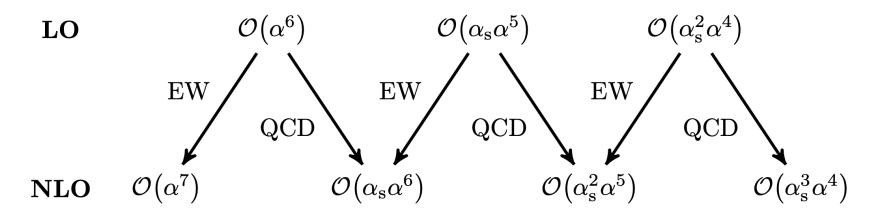


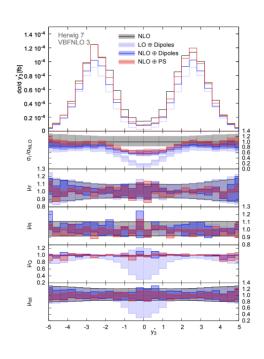
Fig. 3. All contributing orders at both LO and NLO for the VBS processes at the LHC. This figure is taken from Ref. 24

QCD studies in VBS

Simon Plätzer Christian Preuss

VBS and VBF processes provide unique challenges for QCD description.

Fixed order and parton showers established, uncertainties and interplay with non-perturbative contributions needs careful understanding.

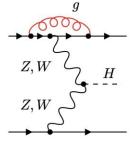

Standard event generators not capable of reproducing all relevant effects, specifically mixing of colour structures and beyond leading-N contributions to non-global jet vetos.

Many studies on PS and the matching +2, 3, 4 jets distributions
Comparison between generators
Color reconnection effects
Soft gluon effects

 PYTHIA's (default) DGLAP shower unable to describe QCD radiation in VBF/VBS even after NLO matching if not done carefully (!)

Since PYTHIA 8.304, VINCIA **ready to use** in "real-life" VBF/VBS setups! (using **sector showers**, including CKKW-L merging & POWHEG hooks).

Vincia can handle the merging in VBF/VBS

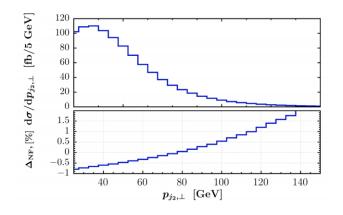

[Rauch, Plätzer – EPJ C77 (2017) 293]

Non-factorizable QCD corrections to VBS

Kiril Menlikov

Known at NN(N)LO

- In PDF approach
- Fully differential (VBF cuts enhance them)

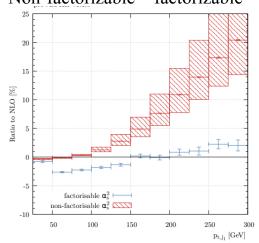


Non-factorizable QCD effects

Given the high precision of the Fact. QCD corr to VBF/S → need to compute the nonfactorizable (non present in PS)

Technicaly complicated + "extreme" situation due to the VBF/S cuts

They amount to \sim -4% but with some kinematic dependence



RESULTS:

di-HIGGS WBF production

Very strong cancellations occurs:

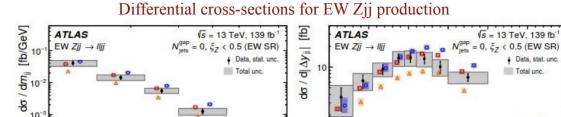
Non-factorizable ~ factorizable

jet

- Typical topology:
 - 2 high energy jets with wide rapidity separation and large invariant mass.
- Hadronic activity suppressed between the two jets.
- Boson pair more central than in non-EW processes.
- ζ : centrality of the diboson system relative to the two tagging jets

•
$$\zeta = \left| \frac{y_{VV} - (y_{j1} + y_{j2})/2}{y_{j1} - y_{j2}} \right|$$

- Zeppenfeld variable η * = $|y_{VV} (y_{j1} + y_{j2})/2|$
- m_{ij}: dijet invariant mass
- $|\Delta y_{ij}|$ or $|\Delta \eta_{ij}|$: (pseudo-)rapidity difference
- Ngap_{jets}: number of jets within the rapidity gap between the two tagging jets
- $|\Delta \phi(VV, jj)|$: azimuthal angle difference between diboson and dijet

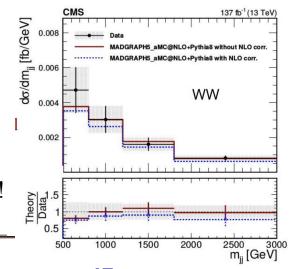

VBF V and VV, leptonic f.s.

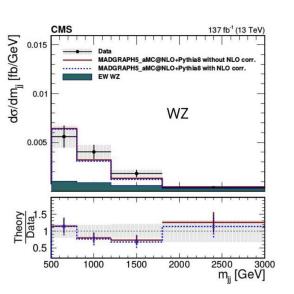
Geetanjali Chaudhary Bianca Sofia Pinolini

 $|\Delta y_{ij}|$

Z+jj (cms +atlas)

Herwig7 + VBFNLO

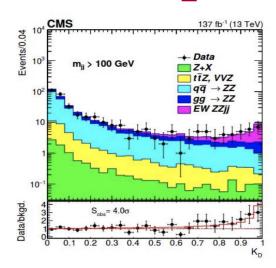

SHERPA 2.2.1


SH

W+W+jj +WZ jj (cms, atlas separately)

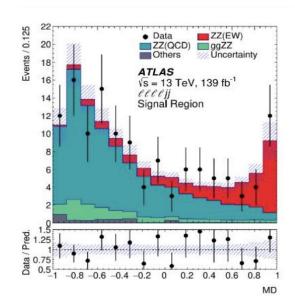
EW production dominant over QCD-induced

First observation of EW-WZ VBS! (~7 sigma)

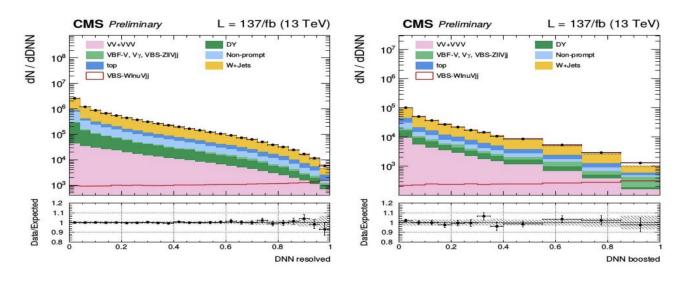


VBF V and VV, leptonic f.s.

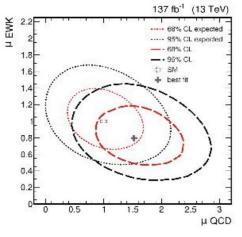
ZZ+jj (cms)


Large QCD ZZ+jj bckg $(gg \rightarrow ZZ \text{ process})$

Geetanjali Chaudhary

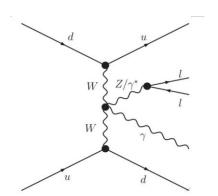

 $ZZ+jj \rightarrow llll + jj + llvv + jj (atlas)$

Reaching more than 5 sigma

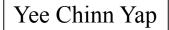


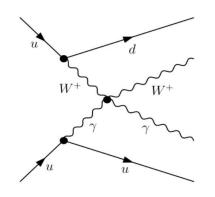
VBF V and VV: semileptonic fs

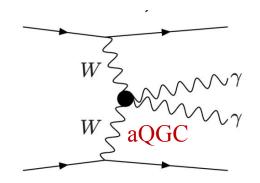
 $WZ+jj \rightarrow lv jj + jj$ (atlas) $ZV/WV/ZV + jj \rightarrow vv/lv/vv qq + jj$ (cms)

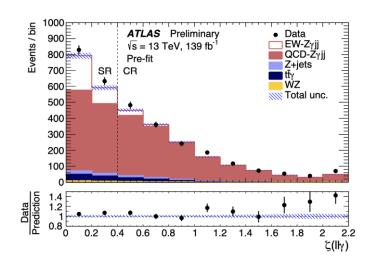


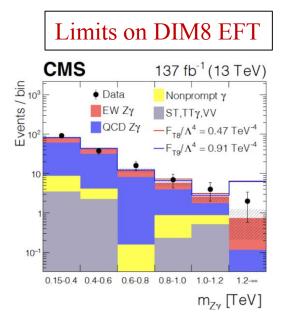
Geetanjali Chaudhary Bianca Sofia Pinolini




4.4 sigma


Even though the opposite-sign $W+W-jj \rightarrow l+l-vvjj$ process has the largest production rate, it has not been observed yet, due to the huge tt background.

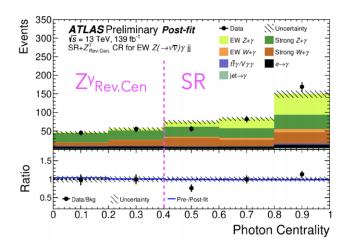




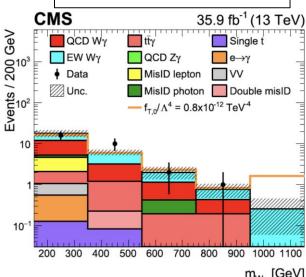
$Z\gamma + jj$ (atlas +cms)

Qcd largest bckg FSR and VVV as bckg

More than 10 sigma

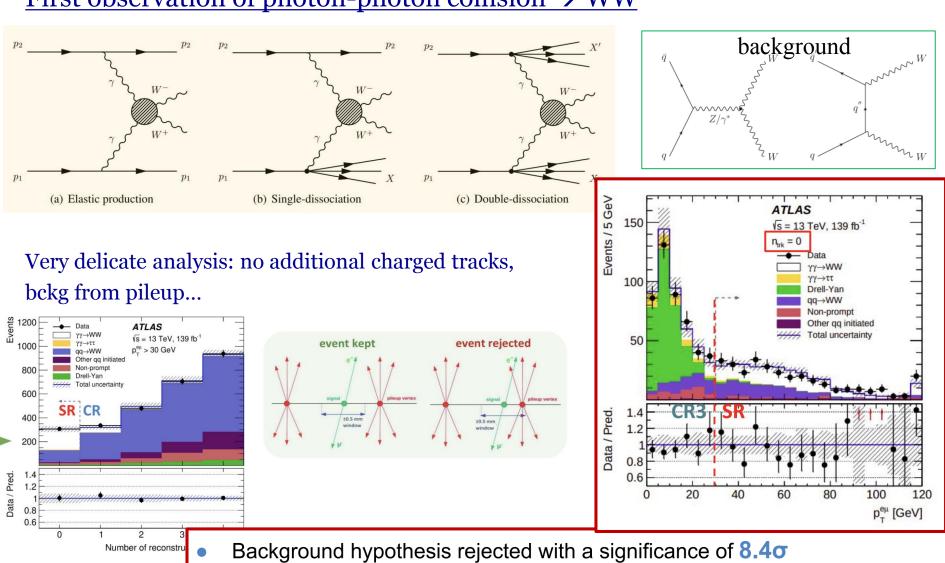

Most stringent limit to date on T₉.

$$Z\gamma + jj \rightarrow vv \gamma + jj$$
 (atlas)

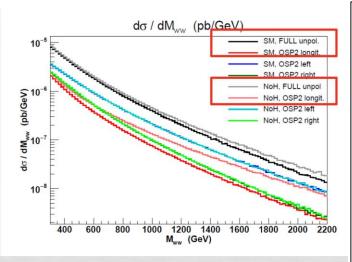

5 sigma

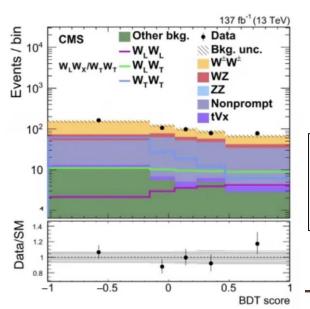
5 sigma

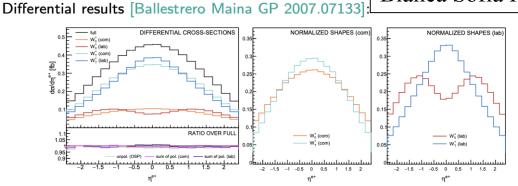
Limits on DIM-8 EFT



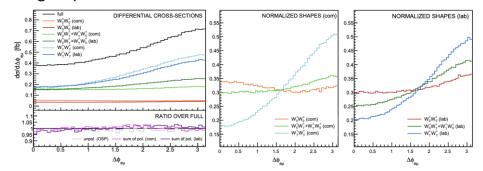
 Limits on operators M0 to M7, T0 to T2, T5 to T7. Very stringent.


First observation of photon-photon collision → WW


Measured fiducial cross-section of 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb


POLARISATION in VBS

Giovanni Pelliccioli Carlo F. Erice Cid Bianca Sofia Pinplini

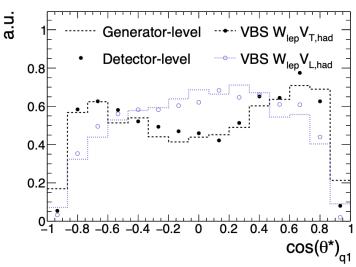


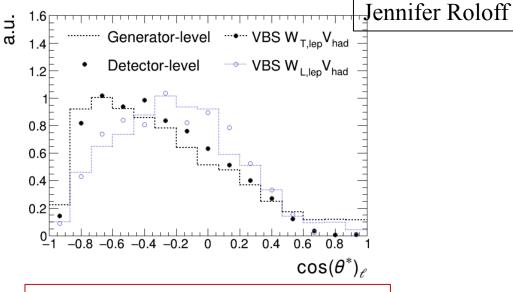
Ballestrero, Maina, Pelliccioli, JHEP 03, 170 (2018)

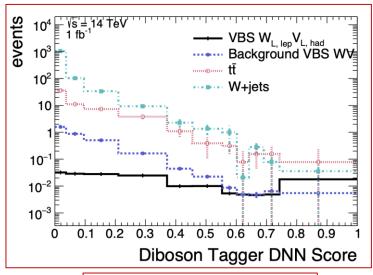
 η_{e+} : strong shape differences in the transverse mode between two definitions.

 $\Delta \phi_{\ell\ell'}$: noticeable shape differences among polarized modes, mostly in the CM. Results do not favor either of the two definitions, CM better motivated.

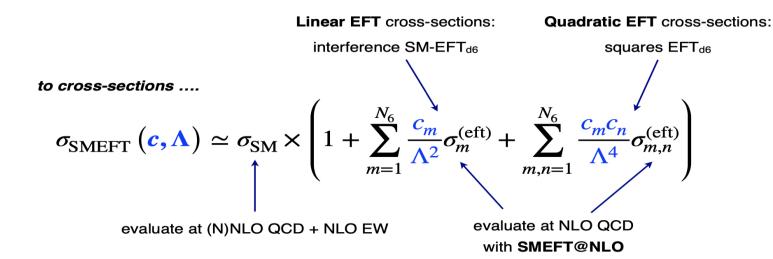

Significance for LX
production at 2.3σ
$(3.1\sigma \text{ expected})$


In the WW ref Frame


Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_{\rm L}^{\pm}W_{\rm L}^{\pm}$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05
$W_X^{\pm}W_{\mathrm{T}}^{\pm}$	$3.06^{+0.51}_{-0.48}$	3.13 ± 0.35
$W_L^{\pm}W_X^{\pm}$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18
$W_{\mathrm{T}}^{\Xi}W_{\mathrm{T}}^{\Xi}$	$2.11_{-0.47}^{+0.49}$	1.94 ± 0.21


49

Study of W_LV_L semileptonic fs

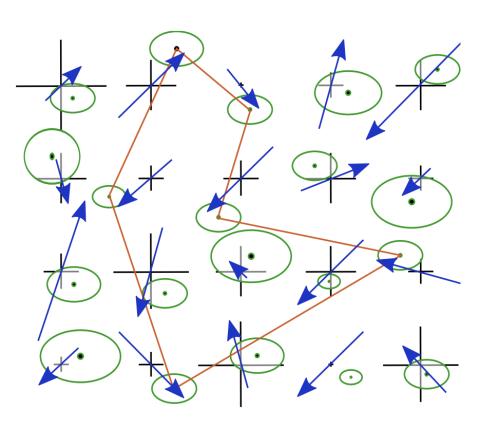


3 sigma with L=3ab-1

SMEFT

Effective Field Theory reveals high energy physics through precise measurements at low energy. The validity is for $E << \Lambda$

from Lagrangian ...
$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{m=1}^{N_6} \frac{c_m}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{n=1}^{N_8} \frac{b_j}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots$$



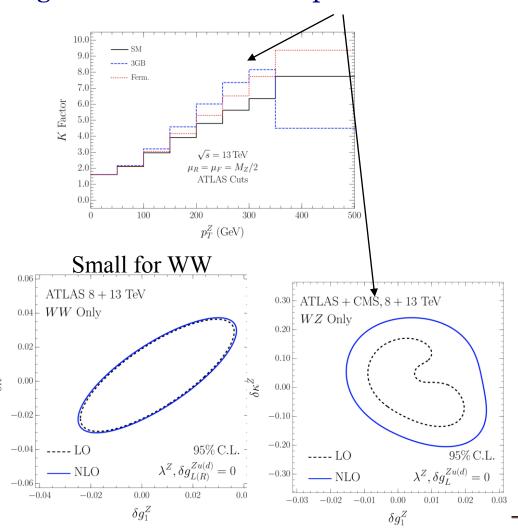
d5 \rightarrow maiorana neutrino. The Weinberg operator can be probed at the LHC through the same-sign WW VBS channel, with W₁-> e,μ,τ , but W₂-> μ,τ

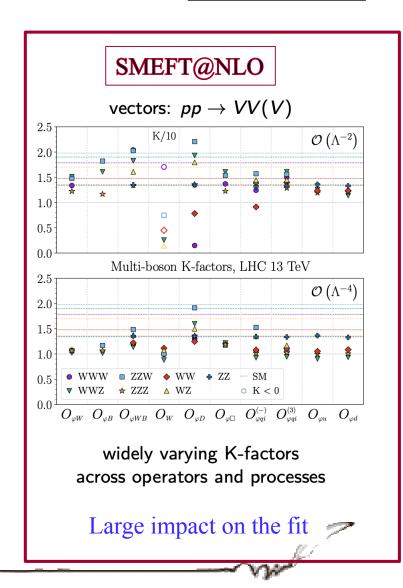
Richard Ruiz

EFT a way to

Identifying patterns of new physics

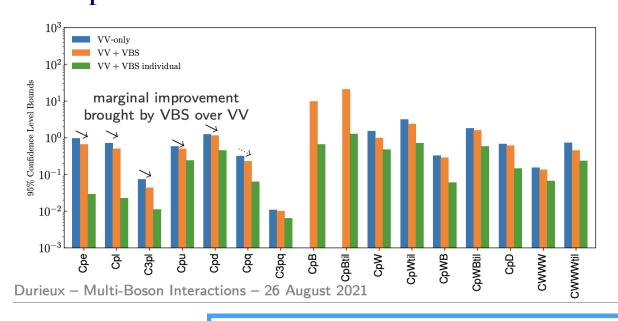
design sensitive observables

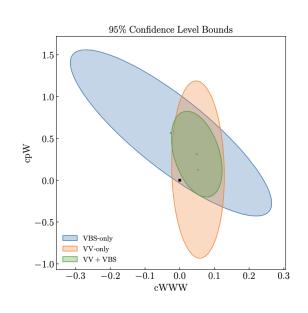

- precise SM predictions
- precise SMEFT predictions
- precise measurements
 - → leverage correlations


NLO in SMEFT

Samuel Homiller

Gautier Durieux


Large effect of NLO in WZ production



VV+VBS SMEFT fit

DIM-6 - linear contribution @ LO 16 operators

Complementarity between

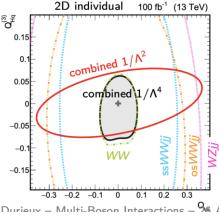
VBS and VV data

when looking at dim6 EFT effects!

VV+VBS SMEFT fit

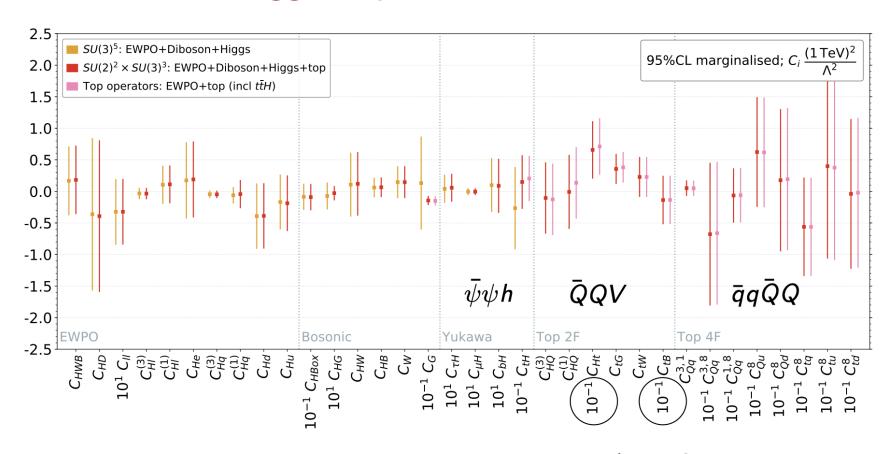
Dim 6, Linear and quadratic terms

$$N \propto |\mathcal{A}_{\text{SM}}|^2 + \sum_{\alpha} \frac{c_{\alpha}}{\Lambda^2} \cdot 2 \operatorname{Re}(\mathcal{A}_{\text{SM}} \mathcal{A}_{Q_{\alpha}}^{\dagger}) + \frac{c_{\alpha}^2}{\Lambda^4} \cdot |\mathcal{A}_{Q_{\alpha}}|^2 + \sum_{\alpha,\beta} \frac{c_{\alpha} c_{\beta}}{\Lambda^4} \cdot \operatorname{Re}(\mathcal{A}_{Q_{\alpha}} \mathcal{A}_{Q_{\beta}}^{\dagger})$$


VV, EW VVjj + QCD VVjj

- **Strong impact of fits including** $O(\Lambda^{-4})$ **terms** for $\frac{1}{2}$ operators. For the remaining, no difference observed.
- including the background QCD dependence improves the sensitivity reach of all analyses.

2D FIT →: complementarity of VBS and VV

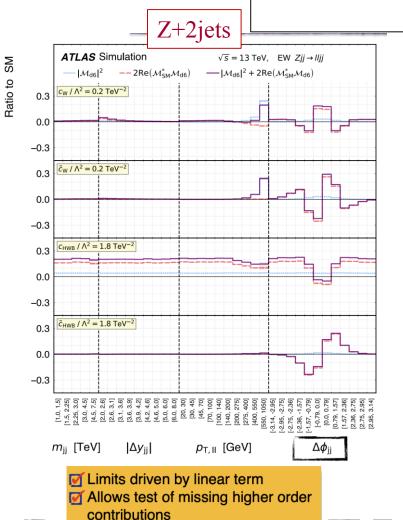

Impact of $O(\Lambda^{-4})$ terms non negligible:

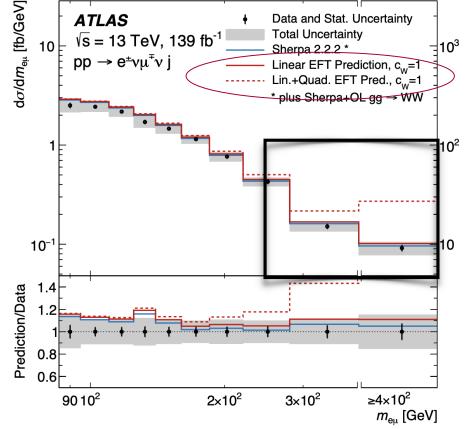
- Distorts the linear elliptic c.l. in a non-trivial way
- Linear-only sometimes better (differently from 1D): Mixed interference between dim-6 amplitudes can mitigate deviations

Adding top and Higgs

Fitmaker: EW+Higgs+top

· tension in various top observables (ttW, $m_{tt}\&y_{tt}$, $p_T^{\text{t-chan}}$: $\chi^2/n \sim 2$, 1.5, 5) but no deviation consistent overall

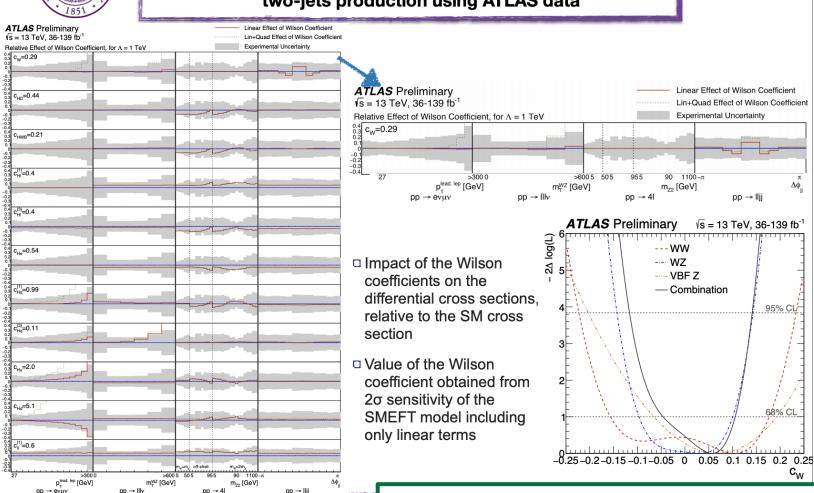

Search for new physis with EFT


Study of both terms

$$\sigma(C_{3W}) = \sigma_{SM} + C_{3W}\sigma_{int} + C_{3W}^2\sigma_{BSM}$$

Linear

Quadratic



Search for new physis with EFT Saptaparna Bhattacharya

Combined effective field theory interpretation of differential cross-sections measurements of WW, WZ, 4I, and Z-plustwo-jets production using ATLAS data

Multiboson Interactions, 2021

EFT to DY: Lorenzo Ricci

Fully differential measurements improve sensitivity and reduce the impact of quadratic terms

SMEFT has to many operators, and all have to be considered to be "bases independent".

geoSMEFT: "the physics of the SMEFT near resonances is interacting fields in a curved Higgs field space. Using this idea the theory is drammatically simplified".

An instant pay off of this approach

Growth in operator forms in connections

<u>Always</u> saturate to fixed number, this is just the simplest organization exploiting this

 Once we have things to dim eight it is sufficient in many observables

	Mass Dimension					
Field space connection	6	8	10	12	14	
$h_{IJ}(\phi)(D_{\mu}\phi)^I(D^{\mu}\phi)^J$	2	2	2	2	2	
$g_{AB}(\phi) \mathcal{W}^A_{\mu u} \mathcal{W}^{B,\mu u}$	3	4	4	4	4	
$k_{IJA}(\phi)(D^{\mu}\phi)^{I}(D^{\nu}\phi)^{J}\mathcal{W}_{uu}^{A}$	0	3	4	4	4	
$f_{ABC}(\phi)\mathcal{W}^{A}_{\mu u}\mathcal{W}^{B, u ho}\mathcal{W}^{C,\mu}_{ ho}$	1	2	2	2	2	
$Y^u_{pr}(\phi) \bar{Q} u + \text{h.c.}$	$2N_f^2$	$2N_f^2$	$2N_f^2$	$2N_f^2$	$2N_f^2$	
$Y^d_{pr}(\phi)ar{Q}d+ ext{ h.c.}$	$2N_f^2$	$2N_f^2$	$2N_f^2$	$2N_f^2$	$2N_f^2$	
$Y^e_{pr}(\phi)ar{L}e+ ext{ h.c.}$	$2N_f^2$	$2N_f^2$	$2N_f^2$	$2N_f^2$	$2N_f^2$	
$d_A^{e,pr}(\phi)ar{L}\sigma_{\mu u}e\mathcal{W}_A^{\mu u}+ ext{h.c.}$	$4N_f^2$	$6N_f^2$	$6N_f^2$	$6N_f^2$	$6N_f^2$	
$d_A^{u,pr}(\phi)ar{Q}\sigma_{\mu u}u\mathcal{W}_A^{\mu u}+ ext{ h.c.}$	$4N_f^2$	$6N_f^2$	$6N_f^2$	$6N_f^2$	$6N_f^2$	
$d_A^{d,pr}(\phi)ar{Q}\sigma_{\mu u}d\mathcal{W}_A^{\mu u}+ ext{ h.c.}$	$4N_f^2$	$6N_f^2$	$6N_f^2$	$6N_f^2$	$6N_f^2$	
$L_{pr,A}^{\psi_R}(\phi)(D^\mu\phi)^J(\bar{\psi}_{p,R}\gamma_\mu\sigma_A\psi_{r,R})$	N_f^2	N_f^2	N_f^2	N_f^2	N_f^2	
$L^{\psi_L}_{pr,A}(\phi)(D^\mu\phi)^J(ar{\psi}_{p,L}\gamma_\mu\sigma_A\psi_{r,L})$	$2N_f^2$	$4N_f^2$	$4N_f^2$	$4N_f^2$	$4N_f^2$	

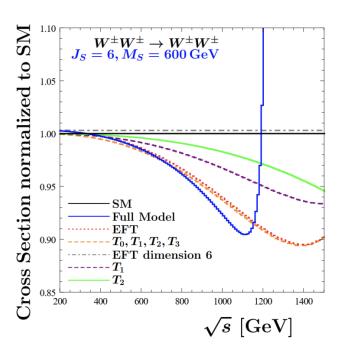
Mases

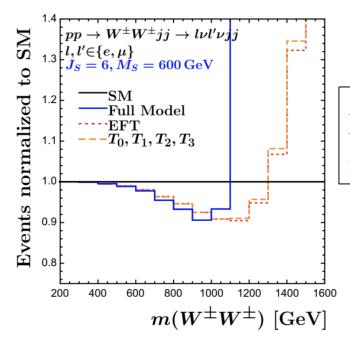
Couplings and mixing angles TGC, Higgs to ZZ,WW QGC,TGC + Higgs

Yukawas

Dipoles

W,Z couplings to fermions +higgs


2001.01453 Helset, Martin, Trott


Basis choice changes entries in these geometric structures, but geometric organization exist in any basis. The trend of saturation of effects at dimension eight is a general feature.

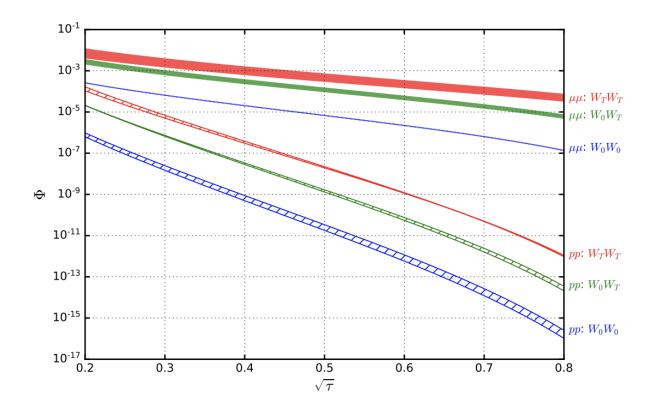
EFT vs UV-complete models in VBS

EFT validity range

A benchmark model with extra scalar or fermion multiplets

- EFT is valid only well below threshold at 2M_S = 1200 GeV (as expected)
- Deviations from SM barely reach 10% within EFT validity range, even for J_S= 6
- Because of J_R⁵ vs J_R³ growth, dim-8 terms are much more important than dim-6
- EFT as tool for describing BSM effects is of only limited use in describing processes with vast dynamic range such as VBS at the LHC

VBS at future collider

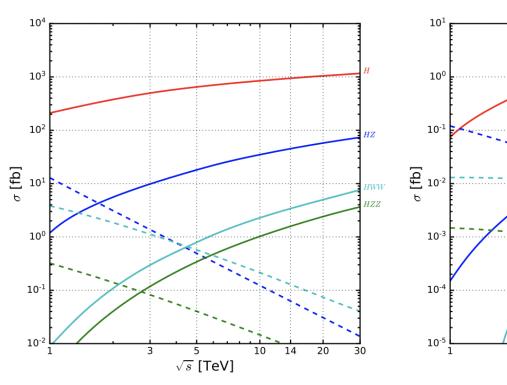


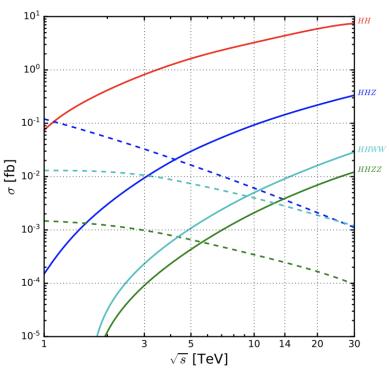
Richard Ruiz

VBS at muon collider

Noteworthy that $W_{\lambda}^+ W_{\lambda'}^-$ parton luminosites (Φ) in $\mu^+ \mu^-$ collisions can exceed those at a pp collider (holds for other VV', too!)

$$\Phi_{i}j(\tau,Q)=\int_{\tau}^{1}rac{d\xi}{\xi}f_{i/\mu}(\xi,Q)f_{j/\mu}\left(rac{ au}{\xi},Q
ight),\quad au=rac{Q^{2}}{s}$$




Richard Ruiz

The same for top, Susy, BSM...

Muon collider

cross sections (σ) vs \sqrt{s} for s-channel annihilation (dash) vs VBF (solid)

- $\sigma^{VBF} > \sigma^{s-channel}$ since
 - $ightharpoonup \sigma^{s-channel} \sim 1/s$
 - $ightharpoonup \sigma^{VBF} \sim \log^2(\dot{M}_{VV}^2/M_V^2)/M_{VV}^2$ due to forward emission of V=W/Z

By the end of LHC

Many more and much more precise measurements and precise theory prediction of VV and VBS

Boson Polarization

EFT fits (or GeoSMEFT?): dim6 + dim8 +...

Maybe New Physics:

- a new "global picture" thanks to the all precision measurements,
- or because of discovery of new particles

And much most SLIDE AT A CONFERENCE IN Jan – 2014

More channels to "Vector Boson Scattering" at the Royal Society redone with the full detector simulation, + WW→ lv4j etc...)

From the experience we have reached so far, even if it will be very challenging and it will take few years:

→ "it could work"

Interesting also to add also more final state:

p.e.: Double Higgs Production \rightarrow can be easier to be seen than VBS in case of composite Higgs (see for example Contino et al: arxiv:1309.7038)

And much mo

SLIDE AT A CONFERENCE IN Jan – 2014

More channels to "Vector Boson Scattering" at the Royal Society redone with the full detector simulation, + WW→ lv4j etc...)

From the experience we have reached so far, even if it will be very challenging and it will take few years:

→ "it could work"

Interesting a p.e.: Double composi

Frankestein Junior

n than VBS in case of