

SUMMARY OF WG2 ACTIVITIES

ROBERTO COVARELLI MAGDALENA SLAWINSKA

VBSCAN FINAL EVENT, 27 AUG 2021

WG2: ANALYSIS TECHNIQUES

Conveners:

- R.C., Madgalena Slawinska
- Formerly: Matthias Mozer and Joany Manjarres

Mandate:

- Determination of the best observable quantities for VBS data analysis
- Implementation of advanced techniques in the signal characterization
- Experimental results publication guidelines and combination

WG2 IN NUMBERS

Workshops organized within the WG:

- Jet reconstruction techniques → Oct. 2018, Krakow
- Combination and EFT → Mar. 2019, CERN
- WITH WG1: VBS polarization workshop → Oct. 2018 Palaiseau

14 periodic meetings over 4 years

2 jointly with WG1, many jointly with WG3

• 17 STSMs

- 2 Thessaloniki → Dresden
- 2 Krakow → CERN
- 2 NIKHEF → CERN
- 3 Thessaloniki → CERN
- 1 Budapest → Antwerpen
- 1 Milano → CERN
- 2 Thessaloniki → Sheffield
- 3 Pavia → Zurich
- 1 Thessaloniki → Annecy

1. OBSERVABLES - BSM FIDUCIAL REGIONS

- Effort to define common BSMenriched fiducial measurements for experiments (Run3)
- Will either become a separate (recommendation) note or be part of the LHC-EWWG YR

Lohwasser, Gomez-Ambrosio et al.

Table 4.4: Suggestions for common fiducial BSM regions

	Table 4.4: Suggest	tions for common fiducial BSM regions				
Vectorboson Fusion						
Final state	Object	Selection requirements				
Z VBF/	leptons	$p_{\rm T,lead} > 25 {\rm ~GeV}, \eta < 2.5$				
Zjj	jets	$p_{{ m T,j1}}$ >55 GeV, $p_{{ m T,j1}}$ >40 GeV, $ \eta < 4.5$				
	bosons	$\Delta(m_Z,m_{\ell\ell})$ $<$ 10 GeV				
	further jets	$p_{\rm T}$ >25 GeV, none in interval between leptons				
	event	$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15 \text{ (see Eq. ??)}$				
	final BSM region	m_{jj} : 0.8-1.2 TeV, >1.2 TeV				
	Vec	ctorboson Scattering				
Final state	Object	Selection requirements				
WW VBS/	leptons	p_{T} >20 GeV, $ \eta < 2.5$, same-sign				
WWjj	jets	$p_{\rm T,j1}$ >30 GeV, $p_{\rm T,j1}$ >30 GeV, $ \eta $ < 4.5,				
		$\Delta \eta_{jj} > 2.5$				
same-sign	final BSM region	m_{jj} : 0.25-0.5 TeV, >0.5 TeV				
$Z\gamma$ VBS /	leptons	$p_{\rm T} > 35, \eta < 2.5$				
$Z\gamma jj$	photons	$E_{\rm T} > 75, \eta < 2.5, \Delta R(\ell/j, \gamma) > 0.4$				
	bosons	$\Delta(m_Z,m_{\ell\ell}) < 10~{ m GeV}$				
	jets	$p_{\rm T,j1}$ >30 GeV, $p_{\rm T,j1}$ >30 GeV, $ \eta $ < 4.5				
	a incir	$\Delta \eta_{jj} > 3.0$				
***********	final BSM region	$m_{jj} > 0.5 \mathrm{TeV}$				
WZ VBS /	leptons	$p_{\mathrm{T,lead}}$ >25 GeV, p_{T} >15 GeV, $ \eta < 2.5$				
	neutrinos	$(\sum \overrightarrow{p}_{\nu}) > 30 \text{ GeV}$				
	jets	$p_{\mathrm{T,j1}}>$ 55 GeV, $p_{\mathrm{T,j1}}>$ 40 GeV, $ \eta <4.5$				
	bosons	$\Delta(m_Z,m_{\ell\ell}) < 25~{ m GeV}$				
	further jets	$p_{\rm T}$ >25 GeV, none in interval between leptons				
	event	$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15 \text{ (see Eq. ??)}$				
	final BSM region	m_{WZ} : 0.8-1.0 TeV, >1.0 TeV				
ZZ VBS /	leptons	p_{T} >25 / 15 / 10 GeV (leading leptons), $ \eta < 2.5$				
ZZjj	jets	$p_{\mathrm{T,j1}}>$ 55 GeV, $p_{\mathrm{T,j1}}>$ 40 GeV, $ \eta <4.5$ $\Delta(m_Z,m_{\ell\ell})<$ 25 GeV				
	bosons					
	further jets	$p_{\rm T}$ >25 GeV, none in interval between leptons				
	event	$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15 \text{ (see Eq. ??)}$				
	final BSM region	m_{WZ} : 0.8-1.0 TeV, >1.0 TeV				

1. OBSERVABLES - POLARIZATION

- A complete study to extrapolate neutrino momenta in final states with 1 or 2 W-boson leptonic decays
 - Analytical approach to extracting polarization information
 - First section of arxiv:2008.05316.pdf

Novak, Grossi et al. Eur.Phys.J.C 80 (2020) 12, 1144

$$\underbrace{(p_{lL}^{2} - E_{l}^{2})}_{a} p_{\nu L}^{2} + \underbrace{(m_{W}^{2} p_{lL} + 2p_{lL} \vec{p}_{lT} \vec{p}_{\nu T})}_{b} p_{\nu L} + \underbrace{(m_{W}^{2} p_{lL} + 2p_{lL} \vec{p}_{lT} \vec{p}_{\nu T})}_{b} p_{\nu L} + \underbrace{\frac{m_{W}^{4}}{4} + (\vec{p}_{lT} \vec{p}_{\nu T})^{2} + m_{W}^{2} \vec{p}_{lT} \vec{p}_{\nu T} - E_{l}^{2} \vec{p}_{\nu T}^{2})}_{c} = 0;$$

2. TECHNIQUES - POLARIZATION

- A complete study to extrapolate neutrino momenta in final states with 1 or 2 W-boson leptonic decays
 - ML approach extracting polarization information (Deep Neural Networks)
 - Second section of arxiv:2008.05316.pdf

Novak, Grossi et al. Eur.Phys.J.C 80 (2020) 12, 1144

2. TECHNIQUES - JETS

- A dedicated workshop to cover all jet techniques relevant to VBS
 - Theory/experiment cross-inputs
- Main topics
 - Central- and b-jet vetoes
 - Quark-gluon discrimination
 - Boosted-V tagging
 - Pileup suppression
 - New endcap detectors (timing, high-granularity calorimeters)

q/g tagging

quark jets are well described with MC due to LEP constraints

gluon jets need to be additionally tuned in MC (no strong LEP constraints)

- LHC experiments should provide measurements of theoretically well defined quantities to perform tuning <= new Les Houches observables were proposed
- lower uncertainty from MC can result in lower theoretical uncertainties in measurements
 - o q/g differences are the origin of the limiting uncertainty for many results using jets

3. COMBINATION - SMEFT

- Large effort in the Action to parametrize possible deviations from SM in VBS in terms of dimension-6 (SMEFT) operators
- Enables inclusion of VBS in SMEFT global fits
- Enables direct comparison with constraints from other LHC processes (e.s. inclusive dibosons)
- 2017-2018:
 - Operator «surveys»

Lohwasser, Gomez-Ambrosio et al.

3. COMBINATION - SMEFT

- 2019-2021: The papers:
 - Phys. Rev. D 104, 013003 (2021):
 - focusing on ssWW
 Dedes et al.
 - arxiv:2101.03180: Gomez-Ambrosio et al.
 - determination of dim-6 VBS limits from existing LHC measurements, compared to dibosons
 - based on earlier VBSCan works: arxiv:1807.09634, arxiv:1809.04189
 - arxiv:2108.03199
 Boldrini et al.
 - comprehensive sensitivity
 estimate including dim-6
 quadratic effects, marginalized
 limits and 2D constraints

3. COMBINATION - DIM-8

- Most experimental VBS studies extract limits on dimension-8 EFT operators (genuine-aQGC generating basis, by O. Eboli et al.)
 - At the moment only existing as single limits per final states
- Large effort in WG2 to provide ATLAS/CMS combinations of dim-8 limits using different final states
 - 1. Using public CMS-fitting package
 - 2. Using internal ATLAS combination tools
 - 3. Other possibilities investigated (gFitter, HEPFit...)

3. COMBINATION - DIM-8

With CMS fitting package

Neukum et al.

- Public data from HEPData
 - Reasonable assumptions on systematic correlations
- MadGraph reweighting tool to obtain many Wilson coefficient values with few samples
- Parton-shower level

reconstructed	CMS ssWW	CMS ZZ	combined	=	
limits	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})		
f_{S0}/Λ^4	[-7.20, 7.21]	[-62.1, 63.1]	[-7.22, 7.71]	_)	
f_{S1}/Λ^4	[-21.5, 23.3]	[-66.3, 66.6]	[-21.7, 23.4]		No significant
f_{M0}/Λ^4	[-5.41, 5.51]	[-10.1, 10.5]	[-5.34, 5.59]	>	change
f_{M1}/Λ^4	[-7.89, 8.14]	[-33.6, 32.1]	[-7.76, 8.02]		J
f_{M7}/Λ^4	[-12.00, 11.90]	[-62.5, 65.7]	[-12.1, 12.0]	J	
f_{T0}/Λ^4	[-0.506, 0.529]	[-0.41, 0.39]	[-0.369, 0.361])	combination
f_{T1}/Λ^4	[-0.252, 0.271]	[-0.64, 0.64]	[-0.241, 0.257]	}	useful (00)
f_{T2}/Λ^4	[-0.805, 0.925]	[-1.19, 1.14]	[-0.711, 0.784]	J	doctal (1)

3. COMBINATION – DIM-8

- With ATLAS tools
 - Use both MadGraph reweighting and splitcomponent generation to cross-check results
 - Unitarity restoration with «clipping» method
 - Thorough validation of MC templates
 - Ready for ATLAS ssWW and WZ combination (new 13 TeV analyses?)

3. COMBINATION - SUMMARY

- WG2 has introduced important concepts in general in EFT combination techniques:
 - Split MC generation (SM, interference, quadratic, mixed) as an alternative to reweighting allows limit extraction with a limited number of samples

$$\begin{split} f_{\text{EFT}}(v) = & f_{\text{SM}}(v) + \sum_{i} \frac{c_i}{\Lambda^2} f_{\text{Lin}_i}(v) + \sum_{i} \frac{c_i^2}{\Lambda^4} f_{\text{Quad}_i}(v) \\ & + \sum_{i \neq j} \frac{c_i c_j}{\Lambda^4} f_{\text{Mix}_{ij}}(v) \end{split}$$

- Highlighting the non-negligible impact of EFT² terms (bringing the question of interplay with dim-8 effects)
- Establishing clearly a hierarchy of process sensitivity to dim-6 and dim-8 effects, providing a pathway to experimental analyses

CONCLUSIONS - OUTLOOK

- VBSCan WG2 gave a fundamental contribution (especially) to establish cross-experiment standards in terms of:
 - Observables
 - Reconstruction techniques
 - EFT combination methods

useful for Run3 and future LHC analyses

- Future areas of work (for a possible new COST?)
 - Bring to conclusion ATLAS-CMS dim-8 fits
 - Needs a unique prescription to avoid unitarity violation (clipping vs. smooth cut-offs vs. ...)
 - Fit VBS with all other LHC inputs in a global SMEFT fit
 - Fully exploit new ML-based techniques for jet reconstruction and extraction of VBS longitudinal polarization