

Update - Kalman Filter

João Böger Sprace

Outline

Semester summary

• QFT I - Prof. Gustavo Alberto Burdman at USP as non-degree student UNDERWAY

Research

- Particle Dark matter
 - Escola de Matéria Escura Farinaldo Queiroz DONE
 - Intro to Particle Dark Matter Stefano
 Profumo UNDERWAY
- Standard Model
 - Intro to SM S. Novaes UNDERWAY
- Tracking sequences
 - HLTIterativeTrackingIter02 DONE
 - Kalman Filter UNDERWAY
 - Add to HLT-Phase2's wiki on GitHub

To better understand how the Kalman filter works and future application on my research I worked a tutorial following the principles of the algorithm ¹. Kalman filter effectively combines several sources of uncertainty to provide a more accurate

estimate of the state of the system than any measurement by it's own. It can be divide in two steps:

- **Prediction step**: The system's state and uncertainties are determined by a **dynamic model**.
- Update step: Uses measurements with system's prediction to obtain a final state through a weighted average.

¹The Kalman Filter in 1D using Python: Example - 1D Localization

Kalman Filter - II

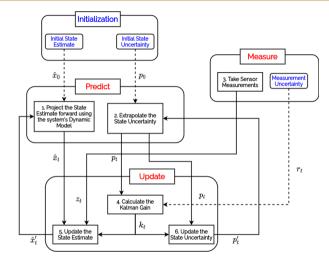


Figure: Kalman Filter 1D Flowchart.pdf

João Böger - Kalman Filter

In order to implement a first approach to Kalman filter we can proceed as follows:

- Define the state Initial position of the robot.
- Define the Motion Model Linear motion with constant velocity.
- Define how the measurements will be made In order only to understand the algorithm I used random values.
- **Define the uncertainties** q and r Same thing, used random values.
- Implement and test the filter I used different values of q and r in order to verify if the final state was following the Kalman Gain k_t .

- x_t Predicted state estimate
- v_t Velocity
- Δt Time interval between two steps
- *h_t* Uncertainty of the predicted state estimate
- h_t^v Uncertainty of the velocity estimate
- q_t Process Noise Variance

- z_t Observation/measurement of the true state of x_t
- r_t Measurement uncertainty
- k_t Kalman gain
- x'_t Updated state estimate
- h'_t Updated variance of the state estimate

Kalman Filter Equations

Thus our Kalman filter will work as follows: **Prediction**

$$\begin{aligned} x_t &= x_{t-1} + v\Delta t & (\text{Predicted state estimate}) \\ h_t &= h_{t-1} + \Delta t^2 \cdot h_t^v + q_t & (\text{Uncertainty associated}) \end{aligned}$$

Update

$$k_{t} = \frac{h_{t}}{h_{t} + r_{t}}$$
(Kalman gain)
$$x'_{t} = x_{t} + k_{t}(z_{t} - x_{t})$$
(Updated state estimate)
$$q'_{t} = p_{t}(1 - k_{t})$$
(Updated uncertainty of the state estimate)

The Kalman filter estimates the state of the system through a **weigthed average** of the system's prediction and measurements. The **weights** are important once they codify if the filter trusts more on the measurements or the model

- $k_t \approx 1$ Means less uncertainty in the measurements. Therefore the filter trusts more the measurements than the model.
- $k_t \approx 0$ Means less uncertainty in the model prediction. Thus the filter follows the predictions more closely than the measurements.

The resulting **weighted average** places the updated state **somewhere between the prediction and the measurement** generally providing a more accurate estimate of the state of the system.

The simulation implemented here has the following setup:

- The particle starts from the origin (x, y) = (0, 0).
- It's initial velocity is unity and forming 45^o with the x-axis.
- Time steps were set to $\Delta t = 1$.
- Random values were used for measurements (z_t) , measurement uncertainty (r_t) ,Process Noise Variance q and uncertainty of the velocity estimate (h_t^v) .

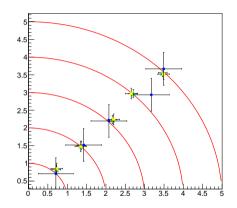


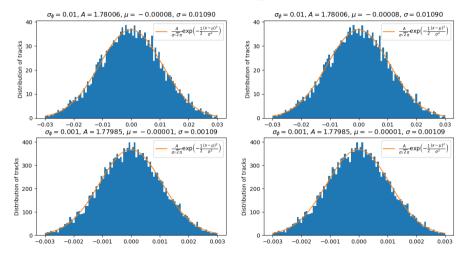
Figure: 2D particle travelling through 5 concentric detectors.

The next step of our study was to analyze the efficiency at which our Filter is reconstructing the particle tracks. In order to test it we used **made-up data** as measurements

 \Box First we define a random value of $\phi_{real} \in \left[0, \frac{\pi}{4}\right]$

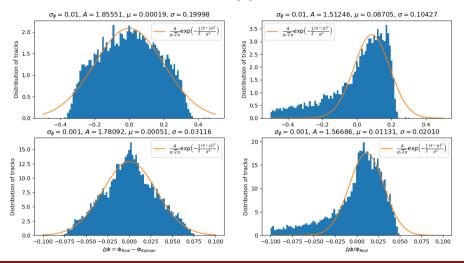
 $\Box\,$ Then we propagate 10 measurements at the concentric detectors at angles $\phi_{real}\pm\Delta\phi$

then when we run the Kalman Filter it'll only have access to 10 made-up measurements. Once we have the Kalman data, we can fit a line representing the Kalman prediction of our track, which will have an angle ϕ_{Kalman} with the *x*-axis. Then we compare our prediction ϕ_{Kalman} with the ϕ_{real} in order to analyze the precision of our Filter.

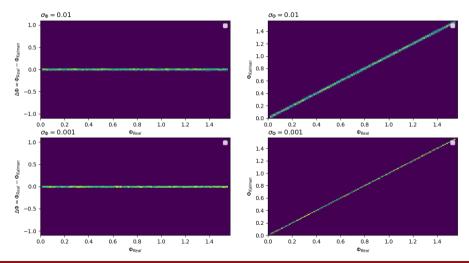


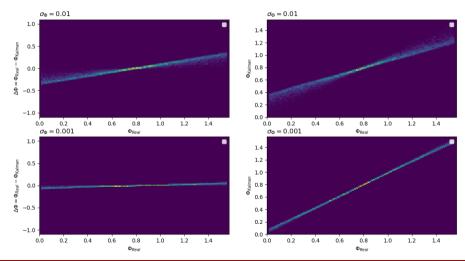
 $\Phi_0 = \Phi_{Z[0]} \pm \sigma_{\Phi_{Z[0]}}$

 $\Phi_0 = \frac{\pi}{\Delta} \pm \frac{\pi}{\Delta}$



 $(x_0, y_0) = (z_x[0], z_y[0]) \pm (z_{\sigma_x}[0], z_{\sigma_y}[0])$





Our interest studying this problem is to better understand how the Track Reconstruction is made at the High Level Trigger. Some of the next steps planned are

- □ Implement the dynamics of a charge travelling in a magnetic field region as our propagation model
- $\hfill\square$ Construct the fitting of a circle which intersects the origin
- □ Implement the combinatorial track filtering