
James Walder

Lancaster University

Final Analysis in ROOT using Parallel

Processing: PROOF

James Walder SCSWT 25-29 Oct 2010 2

Why the need for Parallel Analysis?

• Most final analysis will be performed using a simple ROOT-files,

• I.e. outside of Athena and pool.root formatted data.

• For example: D3PDs

• Even now these „final‟ root files are becoming large to run over.

• May be possible to optimise your current analysis:

• Reduce the number of Branches that are read each event:

• Only useful if the branches are unused for all events.

• Pre-apply a selection – i.e. make an event list:

• Useful if require many loops over a tight sub-selection of

events.

• Still has a large overhead for the initial selection.

• Additional code required to implement.

• Modify D3PD maker code to produce minimal required output:

• More difficult if D3PD provided centrally by performance group

James Walder SCSWT 25-29 Oct 2010 3

What other parallel processing tools are

available?
• The GRID:

• For AOD, DPD-level analysis the Grid is a large resource of

„Parallel computing‟ power.

• No need to re-design code yourself, the grid tools exist.

• Even with D3PDs, event selection, i.e. skimming can be performed

on the grid.

• Additional tools, e.g. SFrame have been developed as a framework

and allow PROOF usage.

• PROOF is not designed for „true‟ parallel processing, but is very

efficient at:

• Full parallel processing usually not required for HEP applications.

• Splitting -> processing -> merging events and their resulting

outputs.

James Walder SCSWT 25-29 Oct 2010 4

Why PROOF?

• Written within ROOT - No additional software required.

• Uses the TSelector class, can be generated in a similar way to MakeClass

• (if you‟re familiar to root) using TTree MakeSelector method.

• Producing final plots should be possible within a rapid development cycle.

• Need for parallel processing of many data files

• Most computers (even laptops) are now multi-core processor machines,

• A pity to ignore wasted cpu cycles.

• PROOF can be run in two configurations:

• server – client setup,

• or in the PROOF-lite configuration requiring no server setup.

• Second method simplest for laptop usage, etc.

• Same class (and code) can be used in standard (non-parallel) root code.

• PROOF used within other experiments,

• able to be maintained at institutes supporting multiple experiments.

James Walder SCSWT 25-29 Oct 2010 5

Using PROOF

• First, need to generate a template code which inherits from the

TSelector class.

• Can be created using MakeSelector method:

• i.e. myTree->MakeSelector(“MySelectorClass”);

• Compare with myTree->MakeClass(“MyClass”);

• This will generate two files:

• MySelectorClass.h MySelectorClass.cxx

• Modify these files to process your events, Fill histograms, fit curves.

• (This is the interesting bit)

• Modify the code to work with proof:

• (This is less interesting, can be mostly copied from other

examples)

• To run with proof mode also needs a command script.

• This copied once, then modified according to needs.

James Walder SCSWT 25-29 Oct 2010 6

Using TSelector in ROOT

• Simple Structure:

• Code already created to

read the TTree

• Define new histograms and

configure according to setup options

• Loop over all events

• Make selections and

fill histograms,

• Perform any necessary fits, etc...

• Finalize and save output,

Perform fits,

make plots,

print information

Define histograms,

perform other initialisations

Run over all events,

Make cuts,

Fill Histrograms

James Walder SCSWT 25-29 Oct 2010 7

Master – Slaves

• Proof works using One master, many slaves

ideology.

• All managed through the proof code.

• Very little additional code to write yourself

Results (Histograms) are merged

Perform fits, make plots, print information

Define plots to be merged, and other initialisations

Each slave processes a sub-selection of events.

Reads the event, fills histograms etc...

Initialise each slave for processing

Prepare code for merging, clean up slave clients

James Walder SCSWT 25-29 Oct 2010 8

Today‟s example

• Will see how to create a TSelector-based template file,

• Run over root files in non-parallel mode.

• Modify the TSelector class to create and fill

• Histogram output

• Add code to create

• Slimmed output TTree.

• Run in PROOF parallel mode.

• Will provide the code that you will need to use to modify the default file.

• Copy and paste a sample script to „steer‟ the processing of the job.

• Run over some sample data and process the results.

• Caveat:

• LXPLUS is not the ideal environment for PROOF-Lite analysis

• If you have ROOT on your laptop, you may want to try the example there.

• Please shout if you experience any problems - it may not be you !

• With the knowledge from this tutorial, you should be able to perform simple PROOF-

based analysis on ROOT-enabled laptops.

James Walder SCSWT 25-29 Oct 2010 9

Summary

• Parallel processing is already heavily used in the production of data
for your analysis.

• Monte carlo event generation

• Real data reconstruction

• Event selection and ntuple production for Athena-level physics
analysis

• Tools already exist – GRID - It works, it‟s powerful, it‟s managed.

• PROOF may be useful for final analysis – Histogram making,
skimming of more complex ntuples.

• For Analysis requiring simultaneous access to all events,
e.g. Maximum likelihood fits,
may not be best suited to Proof, although still possible.

• Suggest to write your analysis code to be “PROOF-ready”,

• i.e. using the MakeSelector method to make a TSelector class

• Can be using in „normal‟ non-PROOF mode, or, as time (and data)
increases then seamlessly used with PROOF.

• https://twiki.cern.ch/twiki/bin/viewauth/Atlas/RegularComputingProof

