Final Analysis in ROOT using Parallel
Processing: PROOF

James Walder
Lancaster University

Why the need for Parallel Analysis?

® Most final analysis will be performed using a simple ROOT-files,

® |.e. outside of Athena and pool.root formatted data.

® For example: D3PDs
® Even now these ‘final’ root files are becoming large to run over.
® May be possible to optimise your current analysis:

® Reduce the number of Branches that are read each event:

® Only useful if the branches are unused for all events.
® Pre-apply a selection — i.e. make an event list:

® Useful if require many loops over a tight sub-selection of
events.

® Sitill has a large overhead for the initial selection.

® Additional code required to implement.

® Modify D3PD maker code to produce minimal required output:

® More difficult if D3PD provided centrally by performance group

LANCASTER) \
UNIVERSITY

What other parallel processing tools are

avallable?
® The GRID:

® For AOD, DPD-level analysis the Grid is a large resource of
‘Parallel computing’ power.

® No need to re-design code yourself, the grid tools exist.

® Even with D3PDs, event selection, i.e. skimming can be performed
on the grid.

® Additional tools, e.g. SFrame have been developed as a framework
and allow PROOF usage.

® PROOF is not designed for ‘true’ parallel processing, but is very

efficient at:

® Full parallel processing usually not required for HEP applications.

® Splitting -> processing -> merging events and their resulting
outputs.

Why PROOF?

® Written within ROOT - No additional software required.
® Uses the TSelector class, can be generated in a similar way to MakeClass

® (if you're familiar to root) using TTree MakeSelector method.

® Producing final plots should be possible within a rapid development cycle.
® Need for parallel processing of many data files
® Most computers (even laptops) are now multi-core processor machines,

® A pity to ignore wasted cpu cycles.

® PROOF can be run in two configurations:
® server — client setup,

® orinthe PROOF-lite configuration requiring no server setup.
® Second method simplest for laptop usage, etc.

® Same class (and code) can be used in standard (non-parallel) root code.

® PROOF used within other experiments,

® able to be maintained at institutes supporting multiple experiments.

LANCASTER)!!\
UNIVERSITY

Using PROOF

® First, need to generate a template code which inherits from the
TSelector class.

® Can be created using MakeSelector method:
® i.e. myTree->MakeSelector(“MySelectorClass”);
® Compare with myTree->MakeClass(“MyClass”);
® This will generate two files:
® MySelectorClass.h MySelectorClass.cxx
® Modify these files to process your events, Fill histograms, fit curves.
® (This is the interesting bit)
® Modify the code to work with proof:

® (Thisis less interesting, can be mostly copied from other
examples)

® To run with proof mode also needs a command script.

® This copied once, then modified according to needs.

LANCASTER)\
UNIVERSITY

Using TSelector in ROOT

® Simple Structure:

Define histograms,
® Code already created to perform other initialisations

read the TTree

® Define new histograms and
configure according to setup options

[
Loop over all events Run over all events,

Make cuts,

® Make selections and L
Fill Histrograms

fill histograms,

® Perform any necessary fits, etc...

Perform fits,
® Finalize and save output, make plots,
print information

‘ LANCASTER /f!\
UNIVERSITY

Master — Slaves

® Proof works using One master, many slaves

ideology.

Define plots to be merged, and other initialisations

. P P Fach slave processes a sub-selection of events.
. . :] Reads the event, fills histograms etc...
? repare code for merging, clean up slave clients

Initialise each slave for processing

Results (Histograms) are merged

Perform fits, make plots, print information
o

All managed through the proof code.

® Very little additional code to write yourself E’J\H‘EAR%T'?%) \

Today's example

® Will see how to create a TSelector-based template file,
¢ Run over root files in non-parallel mode.

¢ Modify the TSelector class to create and fill
® Histogram output

® Add code to create
® Slimmed output TTree.

® Runin PROOF parallel mode.

® Will provide the code that you will need to use to modify the default file.
Copy and paste a sample script to ‘steer’ the processing of the job.
¢ Run over some sample data and process the results.

® Caveat:
¢ LXPLUS is not the ideal environment for PROOF-Lite analysis
¢ If you have ROOT on your laptop, you may want to try the example there.
o

Please shout if you experience any problems - it may not be you !

® With the knowledge from this tutorial, you should be able to perform simple PROOF-

based analysis on ROOT-enabled laptops. LANCASTER)!\

Summary

Parallel processing is already heavily used in the production of data
for your analysis.

® Monte carlo event generation
® Real data reconstruction

® Event selection and ntuple production for Athena-level physics
analysis

Tools already exist — GRID - It works, it's powerful, it's managed.

PROOF may be useful for final analysis — Histogram making,
skimming of more complex ntuples.

® For Analysis requiring simultaneous access to all events,
e.g. Maximum likelihood fits,
may not be best suited to Proof, although still possible.

Suggest to write your analysis code to be "PROQOF-ready”,
® i.e. using the MakeSelector method to make a TSelector class

® Can be using in ‘normal’ non-PROOF mode, or, as time (and data)
Increases then seamlessly used with PROOF.

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/RegularComputingProof

LANCASTER)\
UNIVERSITY

