

Measuring J/ψ production at ATLAS scswt'2010

Vato Kartvelishvili,

with thanks to D. Price, A. Nelson, J.Walder and the rest of B physics group

Outline of talk

Introduction

Some background information to J/ψ production Theoretical models and current status

Measurement

Experimental acceptance, trigger and event selection Yields and methodology **Cross-section result B-fraction** result

Results in context

Comparison to other experiments Theory comparison **Future plans**

Links to history – and to this tutorial

ATLAS analysis tutorial outcome:

Dimuon invariant mass spectrum Clear J/ ψ peak, with a (few) hundred entries

Links to history – and to this tutorial

Some people saw a similar peak 36 years ago... ... and eventually got a Nobel Prize for it!

It's personal

I clearly remember reading about J/ ψ discovery in a Georgian newspaper in November 1974 as a fourth year student, in the foyer of the TSU Physics Department Since then, spent a big chunk of my life studying J/ ψ

The Color Singlet Model @ LO

Color Singlet Model assumes:

Factorisation theorem:

decompose quarkonium formation into:

I)Creation of two on-shell heavy quarks

Typical scale makes this perturbative

2)Binding into physical meson

Non-perturbative QCD

Static approximation:

Heavy quarks have small velocity v in meson, so can be treated as "at rest" in J/ψ frame (double power expansion in α_s and v)

Quantum number conservation in binding:

Assume color & spin preserved in binding

- implies states produced in color singlet state

Extending the model: singlet → octet

Experimental evidence had shown the Color Singlet Model at the time was not able to describe the data Unable to describe p_T dependence or normalisation

Theoretically, was understood there were missing contributions Model had IR divergences in P-wave states that could not be reconciled Understanding of NLO contributions and p_T scaling of diagrams suggested model was too strict and significant contributions were being ignored

Should the pair be perturbatively produced in a color singlet state?

Why can't it non-perturbatively evolve into singlet physical state during formation, via the emission of soft gluons?

Loosening of the colour/spin conservation constraint led to Color Octet Mechanism based on Non-Relativistic QCD (NRQCD)

Color Octet Mechanism / NRQCD

Color octet model solves a number of problems:

Adds additional diagrams = more rate (e.g., vector quarkonia can be produced via a single gluon):

colour-octet fragmentation: $g + g \rightarrow c\bar{c}[^3S_1^{(8)}] + g$ colour-octet t-channel gluon exchange: $g+g \to c\bar{c}[^1S_0^{(8)}, ^3P_J^{(8)}] + g$

$$+ \dots \sim \alpha_s^3 \frac{(2m_c)^2}{p_t^6} v^4$$

$$\sim \alpha_s^3 \frac{1}{p_t^4} v^4$$

Cancels IR divergences in singlet contributions:

 ${}^{3}S_{1}(8)$ to ${}^{3}P_{J}(1)$ production in NRQCD

Color Octet Mechanism / NRQCD

Color octet model needs many parameters, but still has some predictive power

Various non-perturbative octet matrix elements have specific p_T dependences, but normalisations must be taken from data Give good data description at the Tevatron!

LO (+fragmentation) singlet only...

+ octet contributions

Color Singlet Model returns @ NNLO*

In the past couple of years, advances have allowed NNLO* predictions in the Color Singlet Model: show contributions to be (very) large!

Good agreement with CDF data: now testing predictions at ATLAS

The question of spin alignment

Various competing models gave predictions for the spin alignment distribution of produced J/ψ

Spin alignment could be measured and used as probe of production mechanism

Experimental data from Tevatron gave confusing results: not yet a clear picture

$$\frac{dN}{d\Omega} = 1 + \lambda_{\theta^*} \cos^2 \theta^* + \lambda_{\phi^*} \sin^2 \theta^* \cos 2\phi^* + \lambda_{\theta^*\phi^*} \sin 2\theta^* \cos \phi^*$$

So what are ATLAS measuring?

Inclusive J/ ψ differential cross-section in bins of J/ ψ p_T and y **Key considerations:**

- Acceptance: possible strong dependence on J/ψ spin-alignment, which is not fully known/understood
- Trigger and offline reconstruction efficiency

Ratio of indirect-to-prompt J/ψ production cross-section (as a function of $J/\psi p_T$)

$$\mathcal{R} \equiv \frac{d\sigma(pp \to bbX \to J/\psi X')}{d\sigma(pp \to J/\psi X'')_{\text{prompt}}}$$

Many dependencies and systematics cancel in this ratio, making this an attractive early data measurement

Future measurements will directly measure spin-alignment and other observables of interest for probing production mechanisms

Run and event selection (ICHEP)

Data taking periods B and C (23rd April-4th June)

"May" reprocessing and muon_yellowPlus DQ selection (also requires good tracking DQ flags) --- "Good Run List"

Trigger selection:

Differential cross section: only process events passing minimum-bias seeded EF trigger EF_mu4_MSonly_MB2_noL2_EFFS (9.5 nb⁻¹)

Prescaled in period C (and some late runs of B) but efficiency is close to 100%

Ratio measurement:

process events which pass either the above trigger or LI_MU0 (17.5 nb⁻¹)

Take advantage of unprescaled trigger for measurement where the efficiencies are expected to cancel

Publication will use data from periods B through F and HLT single muon triggers (EF mu4 and EF mu6) in later periods

Specific B-physics trigger chains are under validation for period F and beyond

J/ψ candidate reconstruction (ICHEP)

Select oppositely-signed muon pairs with associated ID track (Comb-Comb and Comb+Tag pairs) with p_u >3 GeV, $|\eta_u|$ <2.7,

Background dominated by fake muons, decays in flight, heavy flavour decays

Unbinned maximum likelihood fit used to fit background and signal in data/MC

$$L = \prod_{i=1}^{N} \left[a_0 \ f_{\text{sig}}(m_{\mu\mu}^i, \delta m_{\mu\mu}^i) + (1 - a_0) \ f_{\text{bkg}}(m_{\mu\mu}^i) \right]$$

$$f_{
m sig}(m_{\mu\mu},\delta m_{\mu\mu}) \equiv rac{1}{\sqrt{2\pi} S \delta m_{\mu\mu}} e^{-rac{(m_{\mu\mu}-m_{J/\psi})^2}{2(S\delta m_{\mu\mu})^2}}$$

Signal yield @ $9.5 \text{ nb}^{-1} = 592\pm30$

Mass position 3.095±0.003 GeV

Mass in good agreement with PDG

Resolution 71±4 MeV

Resolution consistent with simulation prediction

Increase in yields from ICHEP to publication

T/ψ) GeV				
	$0.0 \le y < 0.75$			
		Yield	Mass, GeV	
6 – 8	Observed	12 ± 4	3.109 ± 0.019	
	Weighted	101 ± 45	3.095 ± 0.018	
8 – 10	Observed	23 ± 5	3.102 ± 0.005	
8 – 10	Weighted	87 ± 18	3.102 ± 0.005	
10 – 15	Observed	22 ± 5	3.107 ± 0.008	
10 – 13	Weighted	53 ± 12	3.108 ± 0.007	
		$0.75 \le y $	< 1.5	
		Yield	Mass, GeV	
4 – 6	Observed	52 ± 9	3.095 ± 0.013	
4 – 0	Weighted	534 ± 91	3.085 ± 0.017	
6 – 8	Observed	68 ± 9	3.088 ± 0.008	
0 - 8	Weighted	218 ± 27	3.077 ± 0.008	
8 – 10	Observed	18 ± 5	3.098 ± 0.013	
8 – 10	Weighted	39 ± 10	3.099 ± 0.013	
10 – 15	Observed	22 ± 5	3.071 ± 0.015	
10 – 13	Weighted	41 ± 9	3.067 ± 0.014	
$1.5 \le y < 2.25$				
		Yield	Mass, GeV	
0-2	Observed	23 ± 10	3.153 ± 0.030	
0 – 2	Weighted	790 ± 340	3.141 ± 0.032	
2 – 4	Observed	87 ± 13	3.093 ± 0.011	
2 – 4	Weighted	860 ± 180	3.101 ± 0.015	
4 – 6	Observed	97 ± 13	3.089 ± 0.011	
4-6	Weighted	454 ± 65	3.093 ± 0.013	
6 – 8	Observed	77 ± 10	3.102 ± 0.011	
0-8	Weighted	191 ± 24	3.102 ± 0.012	
8 – 10	Observed	34 ± 7	3.074 ± 0.018	
0 - 10	Weighted	59 ± 12	3.074 ± 0.018	
10 - 15	Observed	16 ± 5	3.134 ± 0.027	
10 – 15	Weighted	26 ± 8	3.127 ± 0.028	

In preliminary result for ICHEP, observed signal yields were with 9.5 nb⁻¹ data.

Publication will be on ~3 pb⁻¹ data (B to F)

Yields to end of period D shown below, with much more data still to include!

	J/ψ rapidity	J/ψ rapidity	J/ψ rapidity	J/ψ rapidity
	0 - 0.75	0.75 - 1.50	1.50 - 2.00	2.00 - 2.40
22. — 30. GeV	25.91 ± 5.52	30.16 ± 5.97	10.11 ± 4.05	4.72 ± 2.52
18. — 22. GeV	50.94 ± 7.55	46.34 ± 8.04	34.17 ± 6.45	0.00 ± 0.48
16. — 18. <i>GeV</i>	40.45 ± 6.71	56.91 ± 8.55	32.31 ± 6.40	25.17 ± 7.73
14. — 16. <i>GeV</i>	96.32 ± 10.61	69.40 ± 9.77	57.34 ± 8.97	41.42 ± 8.02
12. — 14. GeV	130.00 ± 11.98	171.95 ± 15.17	100.73 ± 12.15	48.44 ± 9.26
10. − 12. <i>GeV</i>	271.41 ± 17.70	366.34 ± 21.40	244.93 ± 18.96	90.17 ± 12.09
9.5 — 10. <i>GeV</i>	84.10 ± 9.75	106.88 ± 11.69	103.24 ± 11.91	40.95 ± 7.85
9.0 — 9.5 <i>GeV</i>	116.19 ± 11.40	150.60 ± 13.77	119.49 ± 13.34	72.58 ± 10.23
8.5 — 9.0 <i>GeV</i>	109.39 ± 11.35	177.06 ± 15.69	142.68 ± 14.71	63.70 ± 9.12
8.0 — 8.5 <i>GeV</i>	126.11 ± 12.01	227.60 ± 17.32	188.14 ± 16.29	81.80 ± 11.24
7.5 — 8.0 <i>GeV</i>	132.38 ± 12.00	225.31 ± 17.81	213.42 ± 17.40	89.93 ± 11.52
7.0 — 7.5 <i>GeV</i>	103.86 ± 10.90	254.92 ± 18.50	282.81 ± 20.40	84.28 ± 11.78
6.5 — 7.0 <i>GeV</i>	68.69 ± 8.84	319.32 ± 20.31	322.73 ± 21.56	108.11 ± 13.27
6.0 — 6.5 <i>GeV</i>	36.66 ± 6.47	305.63 ± 20.83	332.03 ± 22.33	103.72 ± 16.06
5.5 — 6.0 <i>GeV</i>	No events	246.44 ± 19.64	339.43 ± 22.69	105.84 ± 15.02
5.0 — 5.5 <i>GeV</i>	No events	206.46 ± 17.97	358.61 ± 25.56	149.54 ± 17.94
4.0 — 5.0 <i>GeV</i>	No events	189.46 ± 19.07	521.05 ± 30.80	212.21 ± 20.83
3.0 — 4.0 <i>GeV</i>	No events	82.08 ± 12.50	348.13 ± 26.59	125.40 ± 18.64
2.0 — 3.0 <i>GeV</i>	No events	No events	125.35 ± 20.58	34.75 ± 9.66
0.0 — 2.0 <i>GeV</i>	No events	No events	48.90 ± 16.09	47.70 ± 17.00

Increase in yields from ICHEP to publication

Event weighting: yields \rightarrow cross-section

Each event in given analysis bin at reconstruction level weighted by:

$$w^{-1} = \mathcal{A}(p_T, y, \lambda_i) \times \mathcal{E}_{\mu}(\vec{p}_1) \times \mathcal{E}_{\mu}(\vec{p}_2) \times \mathcal{E}_{trig}(\vec{p}_1, \vec{p}_2)$$
Detector
acceptance
Reconstruction
efficiency
Trigger
efficiency

Acceptance maps built from generator-level MC using a variety of spin-alignment models

As yet unmeasured, assess variation in final results due to spin-alignment as separate ("theoretical" or "model-dependent") systematic

Reconstruction maps for preliminary result based on MC, validated with data and difference assigned as systematic

Work is in progress to use data-driven efficiencies in the publication

Single muon reco efficiency maps

Single muon efficiency maps from prompt J/ψ Monte Carlo for "All", "Combined" and "Tagged" muons (from MC) \rightarrow

Validated by comparing with (limited at the time) Tag & Probe data

Any differences within the analysis bins were assigned as a systematic error

EF_mu4_MSonly_MB2_noL2_EFFS trigger

Trigger efficiency determined from MinBias stream data

Studied separately for combined and tagged muons

Denominator is events passing LI_MBTS_2 trigger

Average efficiency in given bin is determined from actual distribution of J/ψ candidates in data

Trigger matching: making sure that the muon(s) that fired the selected event are those from the J/ψ candidate.

Not used for ICHEP result, but tools are available now for the publication.

Spin-alignment working points

We know acceptance depends on spin-alignment State with generalised angular decay distribution:

$$|\psi\rangle = a_{-1} |1, -1\rangle + a_0 |1, 0\rangle + a_{+1} |1, +1\rangle$$

$$\frac{dN}{d\Omega} = 1 + \frac{\lambda_{\theta^*} \cos^2 \theta^* + \frac{\lambda_{\phi^*} \sin^2 \theta^* \cos 2\phi^* + \frac{\lambda_{\theta^* \phi^*} \sin 2\theta^* \cos \phi^*}{1 - 3|a_0|^2}}{1 + |a_0|^2} \frac{2Re a_{+1}^* a_{-1}}{1 + |a_0|^2} \frac{\sqrt{2}Re [a_0^* (a_{+1} - a_{-1})]}{1 + |a_0|^2}$$

Before we can explicitly measure spin-alignment, we work with five specific working points that provide an envelope for expectation.

FLAT
$$\lambda_{\theta^{\star}} = \lambda_{\phi^{\star}} = \lambda_{\theta^{\star}\phi^{\star}} = 0 \qquad \qquad a_0 = 0, \quad a_{+1} = -a_{-1}$$

$$\lambda_{\theta^*} = -1$$

TRP0

$$\lambda_{\theta^*} = +1$$

TRPP

$$\lambda_{\theta^*} = +1$$
 $a_0 = 0, \quad a_{+1} = +a_{-1}$

Effect of spin-alignment uncertainty

(c)
$$\lambda_{\theta} = -1, \lambda_{\phi} = \lambda_{\theta\phi} = 0$$

(d) $\lambda_{\theta} = +1, \lambda_{\phi} = +1, \lambda_{\theta\phi} = 0$

(e)
$$\lambda_{\theta} = +1, \lambda_{\phi} = -1, \lambda_{\theta\phi} = 0$$

Acceptance maps and weight factors for J/ψ at spin alignment working points

p_T , GeV	FLAT	LONG	TRP0	TRPP	TRPM
	$0 < y \le 0.75$				
6 – 8	1.00	0.67	1.31	1.30	1.32
8 - 10	1.00	0.69	1.29	1.32	1.26
10 – 15	1.00	0.72	1.24	1.25	1.23
		$0.75 < y \le 1.5$			
4 – 6	1.00	0.69	1.29	1.55	1.15
6 – 8	1.00	0.72	1.25	1.29	1.22
8 - 10	1.00	0.74	1.21	1.22	1.20
10 – 15	1.00	0.77	1.18	1.18	1.18
		$1.5 < y \le 2.25$			
0 – 2	1.00	0.81	1.15	1.55	0.96
2 - 4	1.00	0.73	1.23	3.23	0.77
4 – 6	1.00	0.64	1.18	1.98	0.87
6 – 8	1.00	0.79	1.15	1.44	0.98
8 - 10	1.00	0.80	1.15	1.26	1.05
10 – 15	1.00	0.82	1.08	1.18	1.08

Differential cross-section (ICHEP)

Pythia prediction with NRQCD ME's and **ATLAS-wide MC09 tuning (based on MRST LO* PDFs)**

Spin-alignment envelope: From applying acceptance maps with different working points to data distributions (100% correlated to central data)

Central data is inclusive J/ψ for 'null'/'flat' polarisation hypothesis (Red: statistical error)

No theory comparisons here. More extensive MC & theory comparisons in publication

$$d\sigma/dy \times \text{Br}(J/\psi \to \mu\mu)|_{\langle y \rangle \simeq 1.85} = \left(250^{+130}_{-80}\right) \text{nb}$$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-062/

Differential cross-section (ICHEP)

Systematics-dominated @low p_T: Main systematics are from trigger and muon reconstruction

Should be somewhat improved for publication, but will always be limited in this region of phase space

Comparable variation from spin-alignment uncertainty Can only be reduced by direct measurement --- will take a while

In close contact with theorists for latest higher order calculation predictions for publication, and studying various Monte Carlo predictions

$p_T(J/\psi)$ GeV	Mean p _T GeV	$\frac{d\sigma}{dp_T dy} \cdot \text{Br}[J/\psi \to \mu^+ \mu^-] \text{ (nb/GeV)}$			
		$0.0 \le y < 0.75$			
		Data	Рутніа		
6 – 8	6.9	$3.6 \pm 1.6 \text{ (stat)} ^{+3.9}_{-0.3} \text{ (syst)} ^{+3.9}_{-2.3} \text{ (theory)}$	76.5 ± 1.5		
8 – 10	8.9	$3.08 \pm 0.66 \text{ (stat)} ^{+0.40}_{-0.22} \text{ (syst)} ^{+1.7}_{-1.4} \text{ (theory)}$	26 ± 1		
10 – 15	11.9	$0.75 \pm 0.18 \text{ (stat)} ^{+0.11}_{-0.05} \text{ (syst)} ^{+0.37}_{-0.32} \text{ (theory)}$	5.7 ± 0.3		
		$0.75 \le y < 1.50$			
		Data	Рутніа		
4 – 6	4.9	$23.2 \pm 4.0 \text{ (stat)} ^{+5.2}_{-4.9} \text{ (syst)} ^{+18.9}_{-9.9} \text{ (theory)}$	260 ± 3		
6 – 8	6.9	$8.0 \pm 1.0 \text{ (stat)} ^{+1.9}_{-0.6} \text{ (syst)} ^{+3.6}_{-3.0} \text{ (theory)}$	72 ± 2		
8 – 10	8.9	$1.40 \pm 0.34 \text{ (stat)} ^{+0.18}_{-0.09} \text{ (syst)} ^{+0.73}_{-0.62} \text{ (theory)}$	23.3 ± 0.9		
10 – 15	11.9	$0.58 \pm 0.13 \text{ (stat)} ^{+0.06}_{-0.04} \text{ (syst)} ^{+0.26}_{-0.24} \text{ (theory)}$	4.9 ± 0.3		
$1.50 \le y < 2.25$					
		Data	Рутніа		
0 - 2	1.0	$49 \pm 20 \text{ (stat)} ^{+61}_{-26} \text{ (syst)} ^{+58}_{-21} \text{ (theory)}$	621 ± 3		
2 – 4	3.0	$48 \pm 10 \text{ (stat)} ^{+18}_{-18} \text{ (syst)} ^{+139}_{-20} \text{ (theory)}$	773 ± 3		
4 – 6	4.9	$19.1 \pm 2.7 \text{ (stat)} ^{+5.1}_{-3.5} \text{ (syst)} ^{+25.1}_{-6.6} \text{ (theory)}$	235 ± 2		
6 – 8	6.9	7.10 ± 0.88 (stat) $^{+1.32}_{-0.57}$ (syst) $^{+4.5}_{-2.2}$ (theory)	64 ± 1		
8 – 10	8.9	2.14 ± 0.43 (stat) $^{+0.33}_{-0.10}$ (syst) $^{+1.1}_{-0.8}$ (theory)	20.7 ± 0.9		
10 – 15	11.9	$0.37 \pm 0.11 \text{ (stat)} ^{+0.06}_{-0.03} \text{ (syst)} ^{+0.19}_{-0.16} \text{ (theory)}$	4.8 ± 0.3		

Indirect-to-prompt J/y ratio

Indirect (from B decays) and prompt (from QCD sources) production proceed via different mechanisms:

Discriminating variable is the "pseudo-proper time"

Variables and their errors calculated on candidate-by-candidate basis Mass and lifetime fitted simultaneously using unbinned maximum likelihood fit

Different p.d.f. used for J/ψ signal region and sidebands

Delta-function plus exponential for signal Delta-finction plus a sum of several exponentials for continuum background (both convoluted with the resolution function)

Events / [0.25 ps

Indirect-to-prompt J/y ratio

Calculate indirect (B-decay) to prompt (incl. feed-down) production cross-section ratio in bins of J/ ψ p_T

Shown here are projections in lifetime (one bin for illustration) of simultaneous mass/lifetime fit

Indirect-to-prompt J/*y* ratio

$$L_{int} = 17.5 \text{ nb}^{-1}$$

$p_T(J/\psi)$ GeV	$\mathcal{R} \equiv \sigma(pp \to b\bar{b}X \to J/\psi X')/\sigma(pp \to J/\psi X'')_{\text{prompt}}$			<i>p</i> -value
	Data	MC		
1 - 4	$0.22 \pm 0.09(stat) \pm 0.07(syst)$	0.061 ± 0.022	33.5/34	0.49
4 - 6	$0.12 \pm 0.05(stat) \pm 0.06(syst)$	0.137 ± 0.039	23.2/25	0.57
6 - 8	$0.24 \pm 0.05(stat) \pm 0.05(syst)$	0.238 ± 0.070	22.0/20	0.34
8 - 10	$0.25 \pm 0.08(stat) \pm 0.07(syst)$	0.365 ± 0.126	10.1/15	0.81
10 – 15	$0.60 \pm 0.15(stat) \pm 0.10(syst)$	0.469 ± 0.180	6.9/16	0.97

Again compare to ATLAS Pythia 6.4 (MC09)

Ratio described well

Update for publication will use same ~3 pb⁻¹ as the cross section analysis

Issue of pileup in later runs being addressed

ATLAS preliminary results in comparison

Comparison with NNLO* CSM

In order to be compared to inclusive ATLAS data, NNLO* calculation needs correcting for:

feeddown from chi-states indirect contribution from $B \rightarrow J/\psi X$ decays (based on Tevatron measurements)

With these Corrections, the agreement looks remarkably good

Similarly good agreement is found with Colour Evaporation Model

ATLAS preliminary results in comparison

Fraction of indirectly-to-promptly produced J/ ψ

Perspectives on current results

Preliminary results for ICHEP were in good agreement with other LHC experiments

ATLAS-specific **MC** tune was not – tracked to a few issues:

PDF/tune interplay with NRQCD matrix elements

Color reconnection tune of MB/UE

Higher order corrections to J/ ψ singlet production large and LO+PS generator has limitations here without significant tuning

Result was in good agreement with various competing theoretical models, but at the time combined theoretical + experimental errors did not allow for more detailed study.

Publication will include comparison to latest NNLO* theoretical calculations made specifically for ATLAS

Investigating other Pythia tunes/models

Colour Evaporation Model

Possibility of using event-by-event reweighting of Pythia to NNLO* in generation

Future plans for J/ψ studies

In the short-term, planning publication to go to collaboration on the order of weeks.

Both updated cross-section and ratio result based on data up to period F (\sim 3 pb⁻¹), a 200fold increase in statistics over preliminary result (unfortunately, not at lower pT)

Mid-term (10 pb⁻¹+), study of production mechanism in greater detail Direct studies of J/ ψ (and χ_c) spin alignment, using new experimental techniques and taking into account latest phenomenological developments

Longer term (I fb⁻¹), new observables in J/ ψ production will advance these understanding of QCD at the boundary of perturbative/nonperturbative regime

Azimuthal correlations (J/ ψ + μ), heavy flavour production in association with J/ ψ (J/ ψ +cc) and associated hadroproduction (J/ ψ +jets)... more?

10 fb⁻¹+: Double-quarkonium production

Including resonances like η_b (and χ_b) to J/ ψ + J/ ψ - pinnacle of quarkonium physics!

Finally, a couple of recent relevant plots

Integrated luminosity

Dimuon invariant mass spectrum: Short history of 20th century particle physics

