Markus Elsing

Introduction to ATLAS (Offline) Software

Introduction

• will give an overview of ATLAS offline software

→ will not say much about online software (Trigger, DAQ and DCS)

offline software domain

- ➡ applications:
 - generation, simulation, digitization, reconstruction, physics analysis tools, ...
- ➡ software infrastructure:
 - software repository, framework, releases building and validation ...
 - detector description, event data model, conditions database ...
- ➡ not to forget: documentation (!)

use following 30 min. to give a first overview more detailed presentations and practical sessions later this week

ATHENA - the Software Framework

• what is a software framework?

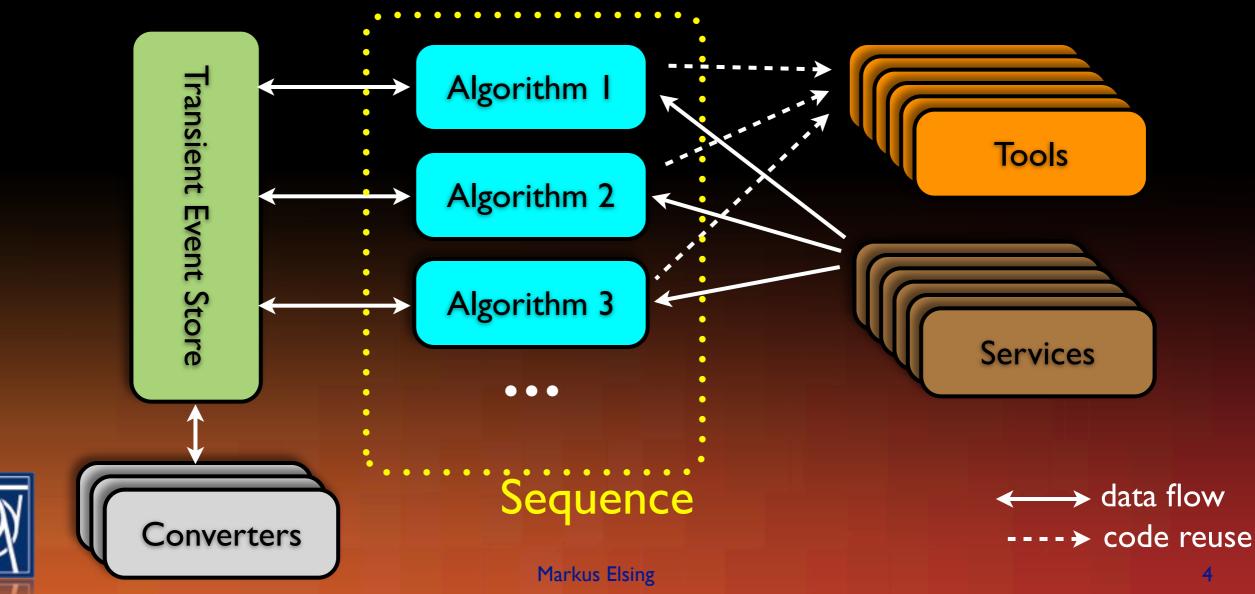
- → skeleton for all application into which developers plug in their software
- ➡ predefines an high level "architecture" or software organization
- provides functionality common to several applications
- ➡ controls the configuration, loading and execution of the software

• ATHENA is based on GAUDI (originally from LHCb)

- → used for Simulation, Reconstruction and even for the High Level Trigger
- → used as well for data analysis (but less popular)
- → software written in C++ (some FORTRAN90 in muon reconstruction)
- scripting and configuration in PYTHON

another Framework in use in ATLAS is ROOT

- → mostly used for (ntuple) analysis and data visualization
- ⇒ applications writting in C++ (CINT) or PYTHON (pyroot)
- ➡ ROOT is as well a collection of software libraries
 - functionality used in ATHENA, like "ROOT I/O" for persistency



... in Practice ?

• ATHENA enforces a strict software architecture

- → structures the development process (!)
- → event data is separated from algorithmic code ("Object Based Model")

• high level design:

Main ATHENA Components

Algorithm

- → a piece of code that **"does something"**
- ➡ inherits methods from base class, especially
 - initialize() ~ runs once at beginning to prepare processing
 - execute() ~ runs for each event
 - finalize() ~ runs once after last event at end of processing

Sequence

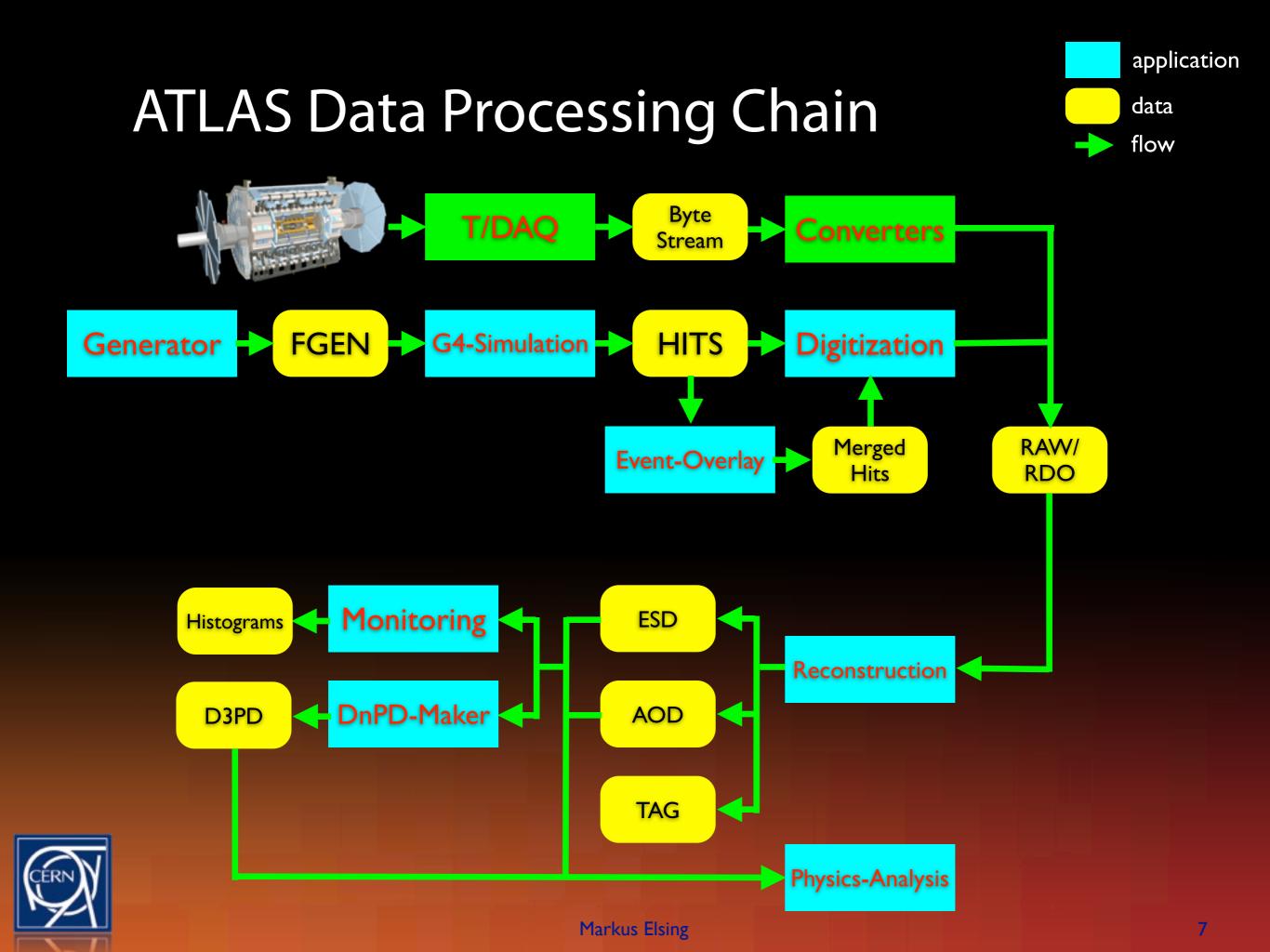
- → a ordered list of Algorithms invoked by framework for each event
- Tool
 - → a piece of code shared between algorithms
 - ➡ can be used many times in an execute() of an algorithm
- Service
 - → provide an interface to meta data, message printing, histogram drawing...
- Transient Event Store
 - StoreGate holds all event related data objects
- Converter
 - ➡ code that implements file input/output of data objects

Assembling an ATHENA Application

- applications are configured using JobOptions
 - ➡ written in PYTHON

• ATHENA framework auto-generates PYTHON classes

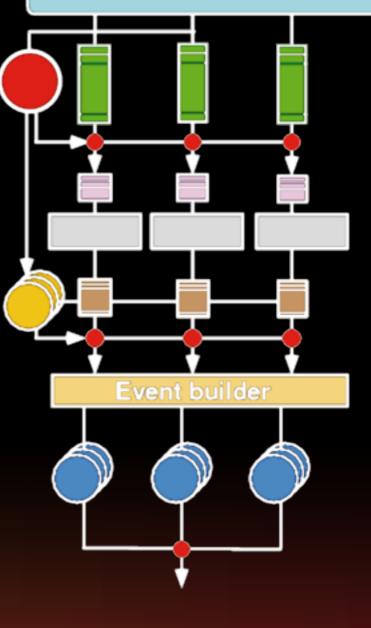
- ➡ so called "Configurables"
- → available for all Algorithms, Tools and Services in a software release
- ⇒ expose all their configuration parameters and their defaults
 ▶ e.g. , a cut value for a p_T of a jet


hand written JobOption files to assemble application

- → import PYTHON classes for Algorithms, Tools and Services you need
- overwrite configuration parameters if needed for your use-case

JobOptions are structured hierarchically, e.g.

- → JobOptions per domain to configure e.g. Muon Spectrometer reconstruction
- → top level JobOption integrate everything into full reconstruction application
 - called RecExCommon ~ the top level JobOptions for reconstruction



Real Data taken by ATLAS

- experiment operation at Point-1 is domain of Online Software
 - sophisticated 3 level Trigger system to select events
 - Level-1 in hardware
 - Level-2 and Event Filter in software (so called HLT)
 - ➡ Data Acquisition system to collect event data
 - ➡ ATLAS writes raw events at a nominal rate of 200 Hz
- raw events are "Byte Stream" encoded
 - "Event Format" defined as collection of data blocks from Read-Out-Drivers (RODs)
 - each data block contains information digitized in front-end electronics of a particular piece of detector
 - detailed Level-1 and HLT results in special ROD blocks

 Byte Stream data is converted into RDOs in ATHENA for offline event reconstruction and analysis

Simulation

Generators

 Monte Carlo generators for pp interactions, output in FGEN

• Geant4 (G4) - Simulation

- → reads (filtered) FGEN events
- ➡ tracks each particle through detector

Muon

Proton

Neutron

- detailed magnetic field
- full list of physics processes
- detailed description of material
- ➡ G4 geometry built from GeoModel
- ➡ output are energy deposits or HITS

Digitization

- detailed emulation of response to energy deposits in detectors
- include electronics and readout effects
- produces raw data or RDO as coming from ATLAS detector
 Markus Elsing

Neutrind

Fast Simulation, Simplified Geometries

• full G4 simulation is slow

precise simulation with full detail of physics processes and detector response

• G4/GeoModel geometry

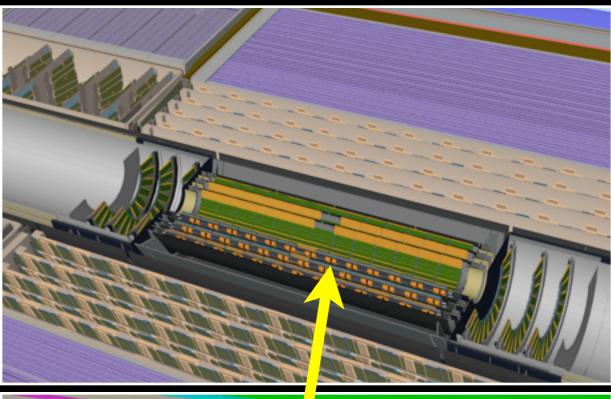
- → tracking particles through is slow
- ➡ simplify geometries

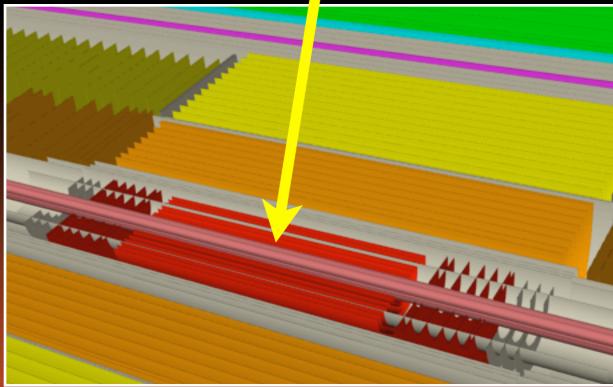
2000

KSi2Ksec

760

KSi2Ksec


8


KSi2Ksec

0.1

<Si2Ksec</pre>

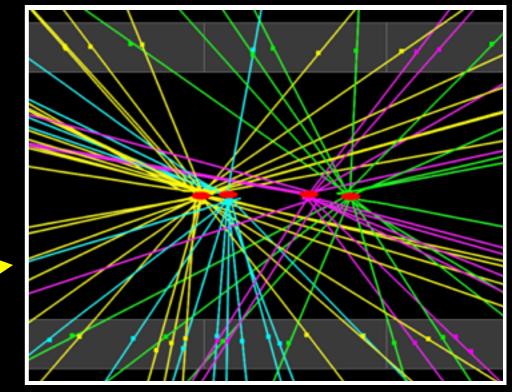
- ▶ 4.8 M volumes in G4
- ▶ 0.01 M volumes in FATRAS+ATLFAST II
- fast simulation
 - \Rightarrow G4 + fast shower
 - replace detailed simulation of showers
 - ➡ FATRAS+ATLFAST II
 - parameterized calorimeter response
 - tracking with simplified detector description and physics lists
 - − output are hits fed into digi+reco
 → ATLFAST I:
 - fully parameterized
 - output are physics objects

Event Overlay for Pileup

• at LHC luminosities

- ➡ several interactions per bunch crossings
- display of an event with pileup

• Event-Overlay for simulated data


- → add "minimum bias" to (high-p_T) physics events
- ➡ add beam- and cavern-backgrounds

• HIT level Event-Overlay

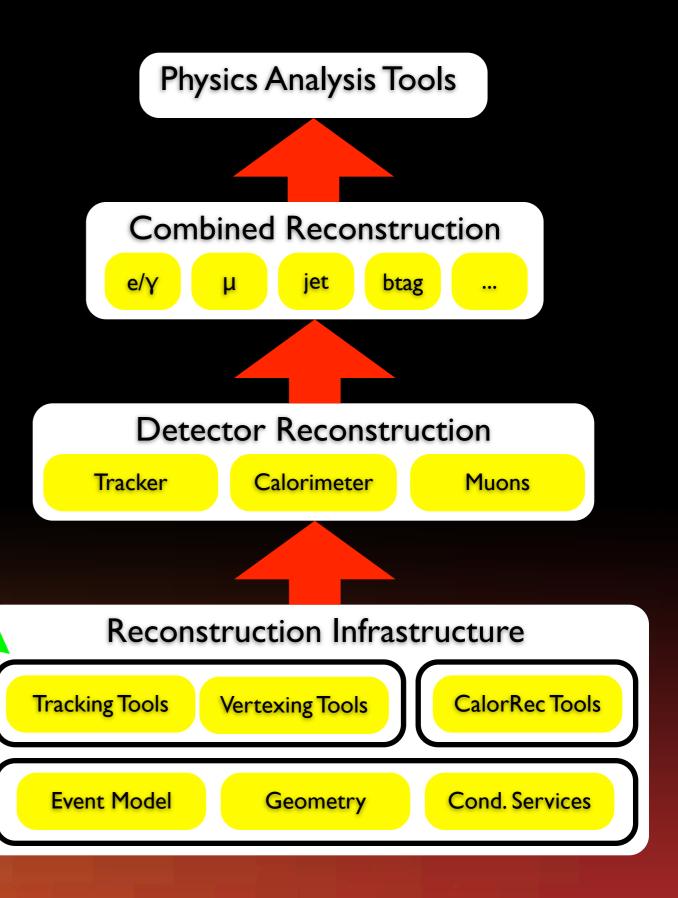
- → simulated HITs for all inputs, add energy deposits and feed into digitization
- ➡ advantage: uses same detailed modeling of detector response
- mostly used today

• real data Event-Overlay

- uses real data RDOs for minimum bias and backgrounds
- → overlay with signal HITs from simulation, model effects of detector response
- → advantage: real data backgrounds and no problems with statistics
- → under development to solve technical problems (e.g. alignment)

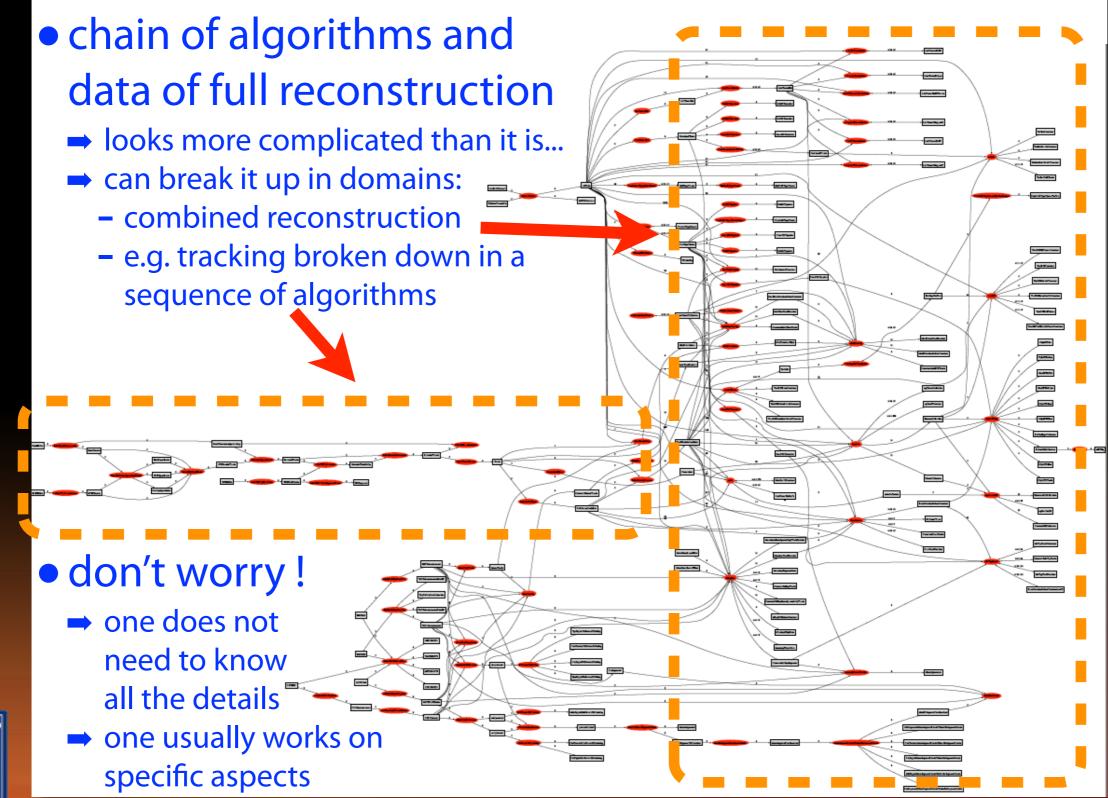
Reconstruction

"natural" SW organization


- ➡ first run detector specific reconstruction algorithms
 - for tracks and calorimeter clusters, ...
- → then combined reconstruction
 - identify physics objects

based on infrastructure

- common Tools and Services
- ➡ e.g. tracking and vertexing tools
 - fitting, propagation...
- ➡ used in all software layers above


common code base with High Level Trigger

regional vs full event reconstruction

And in Detail? ... RecExCommon

Output Data Formats

• FGEN

- ➡ Monte Carlo generator output in HepMC
- HITS

• ESD

- ➡ G4 output as energy deposits in detector
- ➡ includes "truth information" with link between hits and particles in HepMC

• RAW/RDO (Raw Data Objects)

- bit encoded event as produced by the readout of the experiment
 - includes detailed trigger result
- simulated data: includes "truth information" for each RDO
 - (Event Summary Data)
- ➡ detailed reconstruction output
 - clusters and calibrated calormeter cells...
 - tracks, calo-clusters, vertices...
 - identified leptons (e/ μ / τ), photons, jets, b-jets, V⁰...
 - simulated data: "truth information"

(Analysis Object Data)

- reduced format for physics, less detector information
- D3PD

• TAG

• AOD

- (Derived Physics Data)
- several ntuple formats for analysis in ROOT

dESD

several

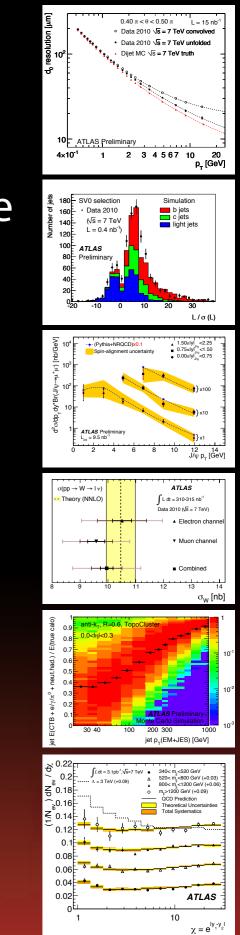
derived

skims

➡ summary information for fast event lookup Markus Elsing event size and level of detail

Physics Analysis Tools

- several options to develop your analysis software
 - ⇒ analysis groups usually use common software (e.g. for top reconstruction)
- physics analysis in ATHENA
 - → read ESD or AOD, may use TAG data to pre-select events
 - ➡ full access to ATHENA Tools and Services, especially Meta Data
 - write ntuples or produce histograms


• ATHENA-Root-Access (ARA)

➡ read ESD, AOD or TAG using ATHENA converters directly in ROOT

ROOT or PYROOT

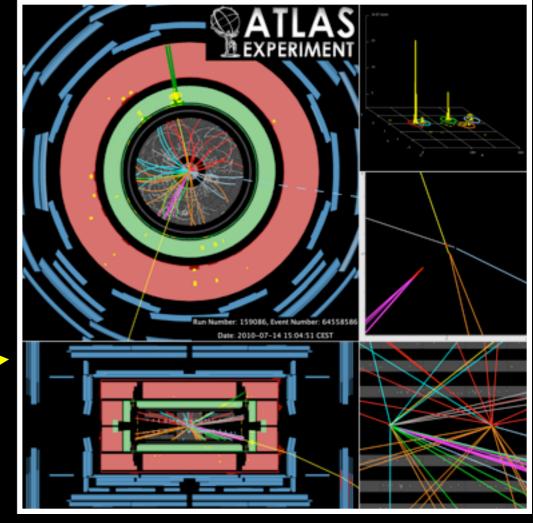
- ➡ analyze D3PDs or your ntuples directly in ROOT
- → most popular, especially for final stages of analysis

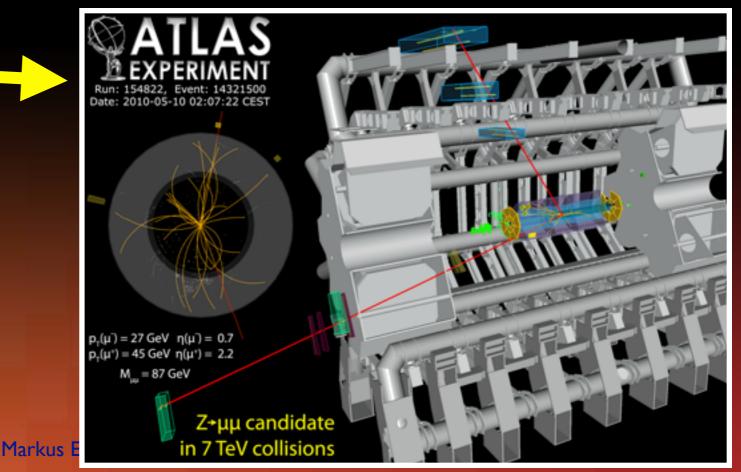
Event Displays

several displays available

- → good tool to inspect your candidate events
- ➡ helps to debug reconstruction and detector

• ATLANTIS


- → works in clever 2D projections
- ➡ JAVA software runs on any laptop
- need to convert events into JiveXML


•VP1

- ⇒ 3D event display in C++
- ➡ it is an ATHENA application
- ➡ makes use of full power of ATHENA Tools and Services
- ATTEINA TOOIS and Service
- still under development

 not to forget PERSINT and AMELIA...

Software Releases

basic software unit is a package

- each package is entirely defined by its path and name
 - e.g. /Reconstruction/RecExample/RecExCommon
- ➡ and its versioning tag
 - e.g. RecExCommon-00-09-00

a software release is defined by its list of package tags

frequent release strategy

- → new major release is built roughly every six months
- → developer release rebuilt (very) approximately every month
- ➡ bugfix releases every (few) weeks
- ➡ caches as often as necessary

• numbering scheme:

release

Software Development Infrastructure

• the repository: Subversion (SVN)

➡ software packages are organized in directories by domain /Tracking/TrkFitter/TrkGlobalChi2Fitter /InnerDetector/InDetExample/InDetRecExample

- ➡ provides support for versioning (tags), commit rights, etc.
- Configuration Management Tool (CMT)
 - ➡ used to check-out, resolve dependencies and built packages

Tag Collector

➡ web interface to manage integration of package versions into releases

Nightly Build System (ATN)

- compiles every night the set of release candidates under development
- ➡ including automated software regression tests

• Run Time Tester (RTT)

automated daily performance validation of software release candidates
 Markus Elsing

How Analysis looks like in practice ?

• typical workflow:

- ➡ setup your environment using CMT
- → identify set of runs satisfying specific criteria with the Run Query Tool
- Iook for datasets to analyze using a metadata browser AMI
- ➡ download a few files using GRID Data Management client tools in DQ2
- inspect the files using Athena-ROOT-Access (ARA) or look at the events visually with ATLANTIS
- develop your analysis code in ATHENA or ARA using the local data to check that it is doing what you expect
- send your jobs to the Grid using PATHENA or GANGA to process large datasets
- \rightarrow download the results using DQ2
- → work on final small ntuple and make histograms using **ROOT**

 by the end of the week you will have seen all elements of this workflow...

Further Information...

- Main computing page:
 - <u>https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasComputing</u>
- Code browsing (password needed):
 - → <u>https://svnweb.cern.ch/trac/atlasoff/browser</u>
- Documentation for beginners:
 - → WorkBook: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/WorkBook</u>
 - Physics analysis WorkBook: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/</u> <u>PhysicsAnalysisWorkBook</u>
 - → Tutorials: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/ComputingTutorials</u>

• Help forums:

→ <u>https://espace.cern.ch/atlas-forums/Lists/Atlas%20forums/By</u> <u>%20category.aspx</u>

This one in particular: <u>https://groups.cern.ch/group/hn-atlas-offlineSWHelp/default.aspx</u>

Markus Elsing

... and more to come !

• Event Data Model and Detector description

➡ talks by James, Vakho and Achil

• Physics Analysis Examples

- ➡ talk by Miguel and James
- VP1 Event Display
 - ➡ talk by Giorgi

Datasets and AMI

➡ talk by Solveig

after introduction to GRID Distributed Computing

→ practical session how to access data, run jobs and do analysis

