

ATLAS Distributed Computing on the Grid

Dario Barberis

Genoa University/INFN & CERN

Overview

- Summary of the ATLAS Computing Model
- Some of the key technologies:
 - Data management and distribution with DQ2
 - Workload management with Panda
 - Conditions Databases with Frontier
- Some of the key activities:
 - Grid Data Processing
 - Distributed User Analysis
 - User Support
 - Tier-3s (on Friday)

ATLAS Distributed Computing

Computing Tasks per Tier

- Tier-0 (CERN)
 - RAW Detector Data Acquisition and archive to tape
 - Calibration and Alignment
 - First processing
 - Data distribution to Tier-1s
- Tier-1s (10 big computer centres)
 - One Tier-1 at the head of each cloud
 - Archive a share of the RAW Detector Data to tape (2nd copy)
 - Re-process those data when needed (new software, new calibration)
 - Archive simulated data to tape and reconstruct when needed
 - Bulk analysis jobs but also user analysis in some cases
 - Data distribution to Tier-2s
- Tier-2s (70 mid-size computer centres)
 - Many attached to a Tier-1 to form a cloud
 - Simulation production
 - User analysis
- Tier-3s (100 (?) home institutes, faculty facilities)
 - End user analysis
 - Non-pledged resources; not under central ATLAS control

Computing Model Principles

- RAW data master copy stored at CERN
- RAW data distributed over all Tier-1s
 - Tier-1 is responsible for preserving data on tape
 - And recall it for re-processing
- Cloud independence: all derived data available in each cloud
 - Generally, there should be a cloud with free CPUs
 - Generally, data should not have to move between clouds
- All data is pre-placed in each cloud
 - For controlled processing in Tier-1s
 - For user analysis in Tier-2s
 - (but evolution in progress right now)
- New data produced in a cloud should be archived there
 - Only Tier-1s are required to have tape archives
 - Also true for the Tier-0 (CERN)

ATLAS Grid Architecture

- ATLAS runs on 3 middleware suites:
 - gLite in most of Europe and several other countries
 - ARC in Scandinavia and a few other small European countries
 - VDT in the USA
- ATLAS Grid tools interface with the middleware and shield the users from it
 - They also add a lot of functionality that is ATLAS specific
- The ATLAS Grid architecture is based on few main components:
 - Distributed Data Management (DDM)
 - Distributed Production System (ProdSys/ PanDA)
 - Distributed Analysis (GanGA/pAthena)
 - Monitoring and Accounting
- DDM is the central link between all components
 - As data access is needed for any processing and analysis step!

Distributed Data Mgmt: DDM/DQ2

The Distributed Data Management (DDM)
 architecture is implemented in the current DQ2 tools

- The unit of storage and transfer is the dataset:
 - A dataset contains all files with statistically equivalent events
- DDM takes care of:
 - Distributing data produced by Tier-0 to Tier-1s and Tier-2s
 - Distributing simulated and reprocessed data produced by Tier-1/2s
 - Distributing user and group datasets as requested
 - Managing data movement generated by production activities
 - Cataloguing datasets (files, sizes, locations etc.)
 - Checking the consistency between the contents of ATLAS catalogues (LFC), local SRM databases and actual files on disk or tape
 - Providing usage information for each dataset replica
 - Deleting obsolete or unnecessary replicas of datasets from disk when unused
 - Providing end-users with client tools to operate on datasets (import/export/move etc)

Worldwide data distribution and analysis

Total throughput of ATLAS data through the Grid: 1st January → mid-October MB/s per day 8000.0-Feb March Jan April June July Aug Sep May 0 Data and MC 6 GB/s Start of reprocessing multi-bunch Throughput (MB/s) 7 TeV 10¹¹ p/bunch operation bunch data-takina operation trains 2009 data reprocessing ~2 GB/s (design) ASGC CERN FZK Peaks of 10 GB/s achieved NDGF ■ TRIU MF

Grid-based analysis in Summer 2010: > 1000 different users; > 15M analysis jobs

SARA

BNL

CNAF

LYON

PIC

The excellent Grid performance has been crucial for fast release of physics results. E.g.: ICHEP: the full data sample taken until Monday was shown at the conference on Friday

Workload Management: PanDA

- PanDA is used to run all MC and reprocessing, and most of the user analysis worldwide
- PanDA@CERN deployed >1 year ago and is running successfully.
- The service was well prepared thanks to preexercises such as STEP'09
- Panda load depends more on the number of resources (~70 sites), and less so with the amount of data

Conditions Databases

- Frontier deployed to enable distributed access to the conditions DB
- Working toward making it more transparent to the end users

Map of installed Squids

Now: oracle 10g

- Frontier reduces considerably the access time to DB data from remote sites
- It is particularly important for sites with low bandwidth and high latency towards Oracle servers

Dui 10 Bui beris: ATLAS Grid

Distributed Analysis

- Basic model: data is pre-distributed to the sites, jobs are brokered to a site having the data
- Large dataset containers are distributed across clouds, so the front-ends do not restrict jobs to a cloud. i.e. DA jobs run anywhere in the world.

DA Functional and Stress Testing

- We pre-validate sites for distributed analysis with Functional and Stress tests:
 - GangaRobot is running a continuous stream of short user analysis jobs at all Grid sites
 - Results fed into SAM
 - Manual or automatic blacklisting
 - HammerCloud is used for on-demand stress tests spanning one or many sites
 - > Used to commission new sites, tune the performance at existing sites, and to benchmark sites to make comparisons
- HammerCloud
 - Invested ~200k CPU-days of stress testing jobs since late 2008

Supporting a Thousand Users

- We have ~1000 active distributed analysis users
 - They should not need to be distributed computing experts The Grid is a black box that should just work
 - Grid workflows are still being tuned not everything is 100% naïve user-proof
 - Supporting the users to get real work done is critical (it will stay like this!)
- ATLAS introduced a team of expert user support shifters in fall 2008.
- DAST: Distributed Analysis Support Team
 - Class 2 (off-site) ATLAS shifts; week-long shifts in EU and NA time zones (Asia-Pacific shifters wanted...)
 - 1st and 2nd-level support: better incorporate new shifters and shares the load in times of high demand
 - DAST is a ~15 member team; each takes a shift every 4-8 weeks.
- Users discuss all problems on a single "DA Help" eGroup
 - Discussion about all grid tools, workflows, problems
 - Not just DA also data management questions

Enabling the Tier-3s

- Enabling Tier-3 activity is the next essential step in ATLAS Computing
- Formed working groups in February 2010 to study:
 - Distributed storage (Lustre/Xrootd/GPFS)
 - DDM-Tier3 link
 - Tier-3 Support
 - PROOF
 - Software / Conditions Data
 - Virtualization
- WG's have wrapped up last Summer. Sites are starting to get connected.
- Tier-3 co-ordinators appointed:
 - Tier-3 co-ordinator: Andrej Filipčič (Ljubljana)
 - Technical co-ordinator: Doug Benjamin (Duke)
- Much more on Tier-3s Friday morning!

Summary and Outlook

- The ATLAS Distributed Computing infrastructure is working thanks to many efforts in preparation
- We are able to
 - process, distribute, and reprocess the data
 - analyse the data
 - provide support to our large community
- and we are tackling the next frontier: Tier-3s
- As we get experience with reality we are looking at the evolution of the model and our implementations, e.g.
 - Less-strict cloud model?
 - Better data distribution for analysis?