Access to ATLAS Geometry and Conditions Databases

Vakho Tsulaia
University of Pittsburgh

ATLAS – South Caucasus Software/Computing Workshop & Tutorial Tbilisi, 2010-10-26

Outline

- Introduction to ATLAS Geometry Database
- Introduction to ATLAS Conditions Database
- Database Replication Technologies
- Strategy for Remote Access to ATLAS Databases
- Practical Info: Tips for Running User Analysis in Athena

Geometry DB

- Relational database of **Primary Numbers** for the ATLAS Detector Description
 - All data for building GeoModel description in single place
 - Contains pointers to external files
 - Identifier dictionaries
 - Magnetic field maps (becoming obsolete)
 - All such files are shipped with the s/w release, no extra steps needed for getting them
- Primary numbers stored inside Data Tables
- Data Tables logically organized into Hierarchical Tree of Nodes
 - Leaf Node: corresponds to Data Table
 - Branch Node: pure logical entity for building the tree
 - Each subsystem has its own branch
 - ATLAS Branch Node: root of the node tree

Geometry DB

Tags

- Leaf Node Tag: subset of records in the Data Table
- Branch Node Tag: collection of tags of its children nodes
- Parent Tag to Children Tags relationships form Tag Tree
- Tag Tree identified by the Tag of the root node
- Global tag: tag of the ATLAS node
 - ATLAS geometry version. Ex.: ATLAS-GEO-16-00-00
- Tags can be locked
 - No changes are permitted in the data corresponding to a locked tag

Geometry DB Browser

http://atlas.web.cern.ch/Atlas/GROUPS/OPERATIONS/dataBases/DDDB

ATLAS DD Database

Node AGDD2GeoSwitches (show column descriptions)

Tag: AGDD2GeoSwitches-02, created: (date unknown)

Status: LOCKED, (date unknown)
Comment: For R.04.01, 21/05/2010

AGDD2GEOSWITCHES_DATA_ID	KEYNAME	KEYVALUE
long	string	int
200	ECT_Toroids	0
201	BAR_Toroid	1
202	Feet	1
203	RailAssembly	1
204	JFSH_Shield	0
205	JDSH_Shield	0
206	JTSH_Shield	0
207	pp2	1
208	MBAP_AccessPlatform	1
209	MBAP_Sector13	0
210	MBWH_BigWheels	1
211	$SADL_CalorimeterSaddle$	1
212	TBWH_BigWheels	1
213	TGC3_BigWheels	1
214	TGC1_BigWheels	1
215	MDTRail	0
216	servicesAtZ0	1
217	HFTruckRail	1

- Large relational database containing information about Detector Status, Data-Taking Conditions, Calibrations, Alignment ...
- ATLAS Conditions DB is a COOL Database
 - COOL: one of 3 components of the LCG Persistency Framework (other two: POOL, CORAL)
- Conditions data maps to transient C++ objects, which are accessible to Athena Algorithms at run time through Transient Store
- Two types of object data storage:
 - Inline Payload: data stored in the relational tables itself
 - Referential Payload: data stored in POOL files outside the relational database
 - Tables hold POOL tokens

- Data is organized into Folders containing objects of the same type
- Folders are organized into Foldersets to form a Hierarchy
- Many independent trees of folders (schema)
 - INDET, LAR, MDT, DCS, GLOBAL, ...
- Separate schema for Online and Offline folders
 - COOLONL_XXX vs COOLOFL_XXX
- Two separate conditions databases for **Data** (COMP200) and **MC** (OFLP200)
 - Logical division of tables inside each schema

- Objects in Folders are stored with an Interval Of Validity (start-stop), channel number and optionally a tag
- Tag of a Folderset corresponds to tags of its daughter Foldersets and Folders
- Tag tree uniquely identified by the root tag Global Conditions
 Tag
 - Data global tags: COMCOND-XXX
 - MC global tags: OFLCOND-XXX

Conditions DB Tag Browser

https://atlas-coolbrowser.web.cern.ch/atlas-coolbrowser

Some statistics...

- ... for demonstrating data volumes in each database
 - Statistics obtained in Feb-2010

	Conditions DB	Geometry DB
Number of schema	29	1
Number of tables	8K	0.9K
Total number of rows	762M	0.5M
Data volume Oracle	0.5TB	0.1GB
Data volume POOL	0.2TB	

DB Access in Athena

- Athena applications access conditions and geometry databases using common LCG software libraries POOL, COOL and CORAL
 - Allows for transparent usage of various technologies (Oracle, SQLite, FroNTier/Squid)

11

Geometry DB

- Master copy: Oracle server at CERN
 - For data loading and management
 - For new code development and testing
 - Not used by any production!
- SQLite replica
 - Entire database dumped into a SQLite file
 - Delivered to remote sites using Database Release technology
 - Used in production

- Master copy: Oracle servers at CERN
 - Online Conditions DB (ATONR)
 - Offline Conditions DB (ATLR)
- ATLR database replicated to 10 Oracle servers at T1-s using Oracle Streams technology
- Direct Oracle access or via FroNTier/Squid
 - Faster access by client application
 - Alleviate load on Oracle servers
- Replicated to SQLite
 - Delivered to remote sites using Database Release technology

Conditions DB: Data traffic

Conditions DB. FroNTier/Squid

- Frontier: distributed database access system
 - Includes data caching
- Main components
 - Frontier server
 - Communicates directly with Oracle server
 - Provides data to Squids
 - Squid
 - Communicates with Frontier server over Http
 - Caches retrieved data locally for its clients
- ATLAS put Frontier system into operation late in 2009
 - Frontier servers at T1 sites
 - ~60 Squids all over the world
 - Mostly T2, some T3 too

Conditions DB. POOL files

- Conditions payload POOL files organized into datasets, which are distributed using Atlas DDM (Distributed Data Management) system
- Distributed to all T1 and T2 sites
 - Some T3-s too
- Need to be included into POOL File Catalog (PFC) in order to be read by Athena jobs
 - Automated procedure of generating local PFC

Database releases

- Mechanism of distributing 'frozen' snapshots of the Conditions, Geometry and Trigger databases outside CERN
- A tarball with
 - SQLite replicas
 - POOL Files and POOL File Catalogs
 - Configuration files for setting up database connections
- Allows for running Athena in 'traveling laptop' mode
 - No need to have network access ...
 - ... provided you have **right** DB Release version

Database releases

Data vs MC

- MC DB Release
 - Aka 'baseline' DB Release. 3-digit versions (ex. DBRelease-12.8.2)
 - Contains all data necessary to run any MC job:
 - Simulation/Digitization/Reconstruction
 - Each new DB Release is a superset of its predecessor.
 - You can always use the most recent DB Release version
- Conditions DB Release for real data
 - Built on top of a baseline DB Release. 4-digit versions (ex. DBRelease-12.8.2.1)
 - Includes complete replica of the geometry database
 - Includes conditions (SQLite & POOL) only for given set of runs

Strategies for remote database access

- Simulation production. Baseline DB Release
- T0 processing. Direct Oracle access for Conditions. Special SQLite replica for Geometry
- Reprocessing. Conditions DB Release
- Calibration/alignment/etc.
 - Conditions:Direct Oracle access at CAF&T1, FroNTier/Squid at T2
 - Geometry: SQLite (DBRelease)

User analysis

- Conditions: FroNTier/Squid
- Geometry: DB Release

Tips for users

What Global Conditions and Geometry tags to use?

- Auto-configure your job
 - Make the job read global tags from its input file (ESD, AOD)
- In job options:

```
from RecExConfig.RecFlags import rec
rec.AutoConfiguration=['everything']
```

In job transforms:

Command line parameter 'autoConfiguration=everything'

https://twiki.cern.ch/twiki/bin/view/Atlas/RecExCommonAutoConfiguration

Tips for users

How to configure my environment to access

- FroNTier/Squid?
- Conditions payload POOL files?
- DB Release for geometry (and MC conditions if needed)?

All that is done for you automatically...

... just sit back and enjoy the ride!

Tips for users

If things go wrong ... and it seems to be related to database access

- Useful information on Wiki
 - Athena DB Access:

https://twiki.cern.ch/twiki/bin/view/Atlas/AthenaDBAccess

COOL Troubles:

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/CoolTroubles

- Atlas DB Release:

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/AtlasDBRelease

- These wiki documentations should be able to help you in narrowing down the problem and then you'll be in position of
 - Either ask your site admin
 - Or send e-mail to Database Operations<hn-atlas-DBOps@cern.ch>

Conclusions

- Access to ATLAS non-event databases (Conditions and Geometry) is fairly complex
- Need to deal with various access patterns, support different technologies
- The great effort has been made to make DB access for user analysis as transparent as possible ...
- Hopefully you find the presented material helpful in understanding details of this complex environment and in diagnosing database related problems

Coffee break ...