

Aleksey Adonin

Ion Sources, GSI (Darmstadt, Germany)

GSI and FAIR facilities

FAIR requirements for Uranium beams

Requirements for U-source:

- U⁴⁺ beam at energy of 2.2 keV/u
- $I_{Beam} = 23 \text{ emA}$ inside $\varepsilon = 220 \pi \cdot \text{mm} \cdot \text{mrad}$
- operation with 2.7 Hz repetition rate

VARIS (Vacuum Arc Ion Source)

<u>Features</u>:

- ➤ Optimized for Uranium: 67% of U⁴⁺
- ➤ High emission current density: 170 mA/cm²
- > NO water cooling is necessary
- > Improved positioning of coils and grids
- Compact extraction system

R.Hollinger, M.Galonska, Nucl. Instr. and Meth. in Phys. Res. B 239 (2005)

Technical data:

> Revolver with **17 Cathodes**

> 2 Solenoids: **0.1** and **0.2 Tesla**

> Extraction system: Triode; 7 x ø4 mm

➤ Emission area: 0.88 cm²

> Arc current: up to 1 kA

> Typical duty cycle: 1 Hz / 0.5 ms

- 1 Ignition trigger
- 2 Coil 1
- 3 Cathode
- 4 Coil 2
- 5 Anode
- 6 Grids
- 7 Plasma electrode
- 8 Isolator
- 9 Screening elect.
- 10 Ground elect.

Recent situation

Well established operation with 1 Hz / 0.5 ms (pulse length)

- High production efficiency of U⁴⁺ ions (67% of U⁴⁺ in the spectrum)
- Proper beam pulse shape (with a flat top over 120 μs)
- Excellent pulse-to-pulse stability (intensity fluctuations < 12%)
- Beam current in front of the RFQ:
 up to 15 emA (2.3·10¹² ions in 100 μs)

VARIS operation stability (pulse-to-pulse) with Uranium

U⁴⁺ beam emittance in front of RFQ

Ion charge state distribution in plasma

Temporal profile of U4+ beam

Recent situation

Well established operation with 1 Hz / 0.5 ms (pulse length)

- High production efficiency of U⁴⁺ ions
 (67% of U⁴⁺ in the spectrum)
- Proper beam pulse shape (with a flat top over 120 μs)
- Excellent pulse-to-pulse stability (intensity fluctuations < 12%)
- Beam current in front of the RFQ:
 up to 15 emA (2.3·10¹² ions in 100 μs)

VARIS operation stability (pulse-to-pulse) with Uranium

It is necessary to:

• increase the ion beam current:
15 emA → 23 emA

keep the current inside:
220 π·mm·mrad

• increase operational repetition rate: 1 Hz → 2.7 Hz

Temporal profile of U4+ beam

Directions of development

Directions of development of Uranium ion source and injector

Increasing the repetition rate

Increasing the beam brilliance and beam intensity in UNILAC

Increasing the repetition rate

Aleksey Adonin ICIS-2021 7 / 24

Repetition rate

Increase repetition rate

from 1 Hz to 2.7 Hz ($\tau_{pulse} = 0.5 \text{ ms}$)

- Frequent ignition failures of cathodes
 - in average, every 4-th pulse fails
- Notably more frequent breakdowns in the extraction system
- Instable operation of the ion source
 - increased intensity fluctuations
- Attempts to stabilize the ion source results in intensity drop of U⁴⁺ beam

VARIS operation stability with Uranium

Repetition rate

Inhibiting factors:

- Increased T_{surface} of the cathode
 - → short circuit bridges → arc ignition failures
- Higher flux of neutrals from the surface
 - → shifting the spectrum to the lower charge states
- Increased T of extraction electrodes
 - → increased breakdown probability → sparking in the extraction system
- Reduce discharge current
 - → reduced plasma density → lower beam current

9/24

Repetition rate

Inhibiting factors:

- Increased T_{surface} of the cathode
 - → short circuit bridges → arc ignition failures
- Higher flux of neutrals from the surface
 - → shifting the spectrum to the lower charge states
- Increased T of extraction electrodes
 - → increased breakdown probability → sparking in the extraction system

Possible solutions:

- Enhance the physical properties of the cathode material
 - → use composite materials in cathodes instead of pure Uranium
- Improve cooling of the cathode and the extraction system
 - → implement active water cooling for cathode revolver and extraction electrodes

U-W composition

Enhancing material properties:

The **production of neutrals** during the discharge pulse can be reduced by **changing the physical properties** of the cathode material. This can be achieved by using an **alloy** or a **mixture** of the desired material with a **more refractory metal**.

Phase diagram of U-W system*

Material	Melting point (K)	Electrical resistivity (nΩ·m)	Thermal conductivity (W/m·K)	Temperature (K) for certain Vapor Pressure					
				1 Pa	10 Pa	100 Pa	1 kPa	10 kPa	100 kPa
U	1405	280	27.5	2325	2564	2859	3234	3727	4402
W	3695	52.8	173	3477	3773	4137	4579	5127	5823

^{*}T. B. Massalski, et al., "Binary Alloy Phase Diagrams", 2-nd Edition

Manufacturing possibilities

Study of the production possibilities of the electrodes from

U-W composition by **Framatome GmbH** (formal AREVA, Erlangen)

- Various methods of production of homogeneous U-W mixture/alloy have been studied and tested:
 - Equilibrium oven
 - Light arc oven
 - Induction oven
- Sets of different prototype electrodes have been produced for tests at GSI:
 - U-W (5% Wt.) on W- and Cu-supporter
 - U-W (12% Wt.) on W- and Cu-supporter

R. Bathelt W. Schmid

U-W composite cathodes:

Main conclusion:

- Stable oper. with 2.8 Hz / 0.4 ms is possible
- No notable difference between 5% and 12%

Beam pulse shape:

- Flat top over 120 μs
- Intensity noise < 10%
- Rising edge steeper as for 1 Hz

Charge state distribution:

- Shifted in direction of 3⁺
- Beam current: up to 16 mA

Stability:

- Pulse-to-pulse fluctuations ≤ 10%

Conditioning time:

- 10-15 min with 2.8 Hz

VARIS performance with U-W composite cathodes

Temporal profile of U4+ beam

Operation stability (pulse-to-pulse) over 10 min

Operation stability over 1 hour

ICIS-2021

Actual problems:

"Bad phases" in cathode operation:

- → ignition failures (> 50% of beam pulses are failed even with P₇₆ = MAX)
- → very unstable arc discharge => => very noisy beam pulse (intensity fluctuations up to 70%)
- → no pulse-to-pulse stability
- → tuning the IS parameters doesn't help => it burns out by itself
- → "bad phase" can take from 5 to 30 min

Lifetime of cathodes:

→ up to 7 hours with 2.8 Hz incl. total time of "BPh" ~1.5 hours

Operation "instability" over 10 min

Active cooling of cathodes

Concept:

- Cathode revolver with water cooling
- Cathodes with improved heat dissipation:
 - Uranium head brazed on Cu-supporter
 - Special geometry of cathodes

Active cooling of cathodes

1-st performance test:

- 4x cathodes have been tested
- difficult to get a stable operation
 - about 40% of operation time "bad phases"
- no notable difference b/w water ON and OFF
- further tests needed...

Active cooling of cathodes

1-st performance test:

- 4x cathodes have been tested
- difficult to get a stable operation
 - about 40% of operation time "bad phases"
- no notable difference b/w water ON and OFF
- further tests needed...

Uranium operation in "Booster-mode"

Test of booster mode for SIS18:

(short test during the last beamtime)

- 4 pulses in 1.1 s + delay $(\tau = 3 \div 7 s)$
- Ion source timing:2.78 Hz / 0.45 ms, request mode
- Pulse-to-pulse stability at MAX performance:
 excellent; <10% intensity fluctuations

Operation stability in "Booster-mode"

Increasing the beam brilliance and beam intensity in UNILAC

Aleksey Adonin ICIS-2021 17/24

Recent situation

Uranium transmission in LEBT:

- 1) Ion source extraction: 130 mA (90 mA of U4+)
- 2) Ter. North PA gap: 100 mA (70 mA of U4+)
- (3) LEBT-UL4 (DT4): 43 mA (30 mA of U⁴⁺)
- (4) LEBT-UL5 (DT5): 35 mA (24 mA of U⁴⁺)
- 5 LEBT behind dipole: 16 mA (U⁴⁺)
- 6) in front of HSI-RFQ: 15 mA (U4+)

Reasons of low transmission:

- PA gap was designed for 300 kV (²³⁸U¹⁰⁺; 11 kV/u)
- designed for a "pencil-beam" from PIG source
- not optimized for high current beams
- beam emittance growth due to dispersion in dipole magnets
- too narrow chamber of the switching dipolenot optimal focusing for U-beam

Towards higher U-beam intensity

Increasing the beam intensity in UNILAC:

- Increase the beam brilliance from the ion source
- Optimize the post-acceleration system
- Reduce the beam losses between the ion source and RFQ
- Increase the stripping efficiency of the gas stripper

Increasing the beam brilliance

New extraction system for VARIS

Multi apertures: 7 holes, ø 4 mm

Plasma - Scr. distance: 4 mm

 \triangleright Aspect ratio: S = 0.5

MAX ext. voltage: 42 kV

Emission area: 88 mm²

Beam emittance in front of the RFQ

A.Adonin and R.Hollinger, Review of Scientific Instruments, 89, art. no. 052304 (2018)

Result:

- Improved transmission in UNILAC
- Record intensity behind high current injector:

7.5 emA of U⁴⁺

1.2·10¹² part. (in 100 μs)

Increasing the stripping efficiency

New H₂ pulsed gas stripper:

(performance tests in 2016)

- Higher gas target densities as with N₂-jet stripper
- Increased stripping efficiency for Uranium (U⁴+ → U²8+):
 12.5 % → 21 %
- New intensity record for U²⁸⁺:

11 emA (2.4·10¹¹ part. in 100 μs)

W.Barth et al., Phys. Rev. AB, **20 (5)**, art. no. **050101** (2017)

Optimization of the PA-system

Post acceleration system:

- Optimization of the setup to reduces distances:
 - Ion source \rightarrow PA gap \rightarrow 1-st magnet
- Reduce ion beam losses between the source and 1-st magnet in the LEBT
- Optimization of electrodes geometry in PA gap → electrostatic beam compression

Optimization of the setup

Electrostatic beam compression (Ta-beam)

A.Adonin, R.Hollinger, Rev. Sci. Instrum. 85 (2), 02A727 (2014)

Project PRIDE

PRIDE - PRe-Injector DEdicated for uranium operation

Terminal West:

- Uranium operation onlyno cross-contamination risk
- Optimized post-acceleration gap

Compact LEBT:

- 9.9 m long straight beam transfer line design for U⁴⁺ beams
- No beam emittance growth due to dispersion in dipole magnets
- Ion charge states separation by focusing on tunable iris
- Higher transmission efficiency for U⁴⁺ ions

FAIR is comming...

Thank you very much for your attention