

Development and status of the FRIB 28 GHz SC ECRIS

Haitao Ren On Behalf of FRIB ECR Ion Source Team

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan

Outline

- **FRIB Introduction**
- **FRIB SC ECR ion source**
- Magnet assembly and first cooldown
- Conventional parts assembly status
- Path Forward
- Summary

Facility for Rare Isotope Beams A DOE Office of Science User Facility Facility for Rare Isoto

Funded by DOE Office of Science

Freed by DOE SC with contributions and

cost share from Michigan State University

FRIB project scope includes accelerator,

target system, pre-separator, fragment

- Funded by DOE–SC with contributions and cost share from Michigan State University
- **FRIB project scope includes accelerator,** target system, pre-separator, fragment separator
- Accelerate ion species up to ²³⁸U with to 400 kW for rare isotope production

- Fast, stopped, and reaccelerated beam capabilities
- First user experiments expected in 2022

FRIB Driver Linac Technical Construction Completed 46 Cryomodules, 4 SC Dipoles, 242 RT Magnets, 7 RT Bunchers, 1 RFQ 46 Cryomodules, 4 SC Dipoles, 242 RT Magnets, 7 RT Bunchers, 1 RFQ

SRF Production Completed: May 2020

- **SRF Production Completed: May 20**
 4 cavity types, 6 cryomodule types: designed, **EQUACTION**

developed, fabricated, and tested at MSU developed, fabricated, and tested at MSU with industrial suppliers. **SRF Production Complete**

4 cavity types, 6 cryomodule types: designed, **complete**

developed, fabricated, and tested at MSU

with industrial suppliers.

A dedicated full SRF processing and

cryogenic testing facility wa 4 cavity types, 6 cryomodule types: designed, **Example Victor** developed, fabricated, and tested at MSU

with industrial suppliers.

A dedicated full SRF processing and

cryogenic testing facility was built 2014 to

suppo
- **A** dedicated full SRF processing and cryogenic testing facility was built 2014 to support in-house SRF production. experiment to the matter of the support in-house SRF production.

Total of 6 years of production to deliver all

experiment of the support in-house SRF Ith industrial suppliers.

dedicated full SRF processing and

support in-house SRF production.

otal of 6 years of production to deliver all

yomodules for FRIB linac.

Jan 2015: received first production cavity (β =

- Total of 6 years of production to deliver all
	- 0.53 HWR) from vendor
	- pandemic shutdown.
	-
- A dedicated full SRF processing and

cryogenic testing facility was built 2014 to

support in-house SRF production.

 Total of 6 years of production to deliver all

cryomodules for FRIB linac.

 Jan 2015: received fi Example the sting facility was built 2014 to

support in-house SRF production.

Total of 6 years of production to deliver all

cryomodules for FRIB linac.

• Jan 2015: received first production cavity (β =

0.53 HWR) f 2020, energized Feb 2021.

Michigan State University

**FRIB Linac Commissioning
Pam Commissioning in Parallel with Installation
am commissioning stages with an Accelerator Readiness Review** Phased Beam Commissioning in Parallel with Installation **FRIB Linac Commissioning**

Phased Beam Commissioning in Parallel with Installation

We planned 7 beam commissioning stages with an Accelerator Readiness Review

(ARR01-07) preceding each stage. ARR01-05: through Linac. AR

 We planned 7 beam commissioning stages with an Accelerator Readiness Review target and secondary beam line.

Lithium Stripper Commissioned with Beam: World's First Beam Stripping with Lithium

- **Example 1** Lithium stripper is one of the key elements $\sqrt{\frac{1}{2}}$ Deflector for FRIB high power beam
- **Design allows physical coexistence of lithium** stripper and carbon stripper for enhanced availability **Example 12 Controlled's First Beam Stripping**

Lithium stripper is one of the key elements

for FRIB high power beam

Design allows physical coexistence of lithium

stripper and carbon stripper for enhanced

availability
- Commissioned April 2021 with beam in FRIB tunnel
	- $124Xe26+$ at 17 MeV and $238U37+$ at 20 MeV through LS1 and Li stripper to FS1 beam dumps.
	- at 400 W, duty cycle = 5.4%

FRIB Front End Overview

- **Two ECR sources on High Voltage** (HV) platforms
	- temperature source
		- early operations
	- on VENUS (LBNL)
		- next year (2022) @ 18 GHz
- **EXECT:** Low energy beam transport (LEBT)
	-
	-
	-
	-
	-
- (RFQ)
	-
- Medium energy beam transport (MEBT)
	-

**ARTEMIS ECR Source Supporting Linac Operations
and the SC-ECR Source Under Construction** and the SC-ECR Source Under Construction

Beams developed on Artemis

Ion Sources Performance Requellary of Sources Performance Requelly

Commissioning

• 36-Ar, 86-Kr, 129-Xe Beam

• 25 to 50 euA with M/Q > 7

• Ar⁸⁺ to Ar¹¹⁺ - Kr¹⁴⁺ to Kr¹⁷⁺ **Ion Sources Perform**
Commissioning
• 36-Ar, 86-Kr, 129-Xe Beam
• 25 to 50 euA with M/Q > 7
• Ar⁸⁺ to Ar¹¹⁺ - Kr¹⁴⁺ to Kr¹⁷⁺
• Ar⁹⁺ and Kr¹⁷⁺ used most of the time
• Over 200euA of Ar 9+ demonstrated and u **Ion Sources Performance Re**

Commissioning

• 36-Ar, 86-Kr, 129-Xe Beam

• 25 to 50 euA with M/Q > 7

• Ar⁸⁺ to Ar¹¹⁺ - Kr¹⁴⁺ to Kr¹⁷⁺

• Ar⁹⁺ and Kr¹⁷⁺ used most of the time

• Over 200euA of Ar 9+ demonstra Ion Sources Performance Requirements

Commissioning

-
-
- - Ar^{9+} and Kr^{17+} used most of the time
	- Over 200euA of Ar 9+ demonstrated and used in LEBT
-
- **ION Sources Performan**

Commissioning

 36-Ar, 86-Kr, 129-Xe Beam

 25 to 50 euA with M/Q > 7

 Ar⁸⁺ to Ar¹¹⁺ Kr¹⁴⁺ to Kr¹⁷⁺

 Ar⁸⁺ and Kr¹⁷⁺ used most of the time

 Over 200euA of Ar 9+ demonstrated a **Ion Sources Performance Requirements**

Dommissioning

25 to 50 euA with M/Q > 7

25 to 50 euA with M/Q > 7
 A^{n^4b} to $A^{r11} + Kr^{14}$ to Kr^{17+}
 \cdot Ar⁹⁺ and Kr^{17+} used most of the time
 \cdot Over 200euA of Ar platform operated 71kV and RFQ at 100kW CW

FRIB Operations

Commissioning

• 36-Ar, 86-Kr, 129-Xe Beam

• 25 to 50 euA with M/Q > 7

• Ar⁸⁺ to Ar¹¹⁺ - Kr¹⁴⁺ to Kr¹⁷⁺

• Ar⁸⁺ and Kr¹⁷⁺ used most of the time

• Over 200euA of Ar 9+ demonstrated and used in LEBT

• Beam e elements ranging from oxygen to Uranium 36-Ar, 86-Kr, 129-Xe Beam

25 to 50 euA with M/Q > 7

Ar⁸⁺ and Kr¹¹⁺ - Kr¹⁴+ to Kr¹⁷⁺

and Kr¹⁴⁺ and Arth of the time

- Over 200euA of Ar 9+ demonstrated and used in LEBT

3eam energy 12keV/u

» Demonstrated ac • 25 to 50 euA with M/Q > 7

• Ar⁸⁺ to Ar¹¹⁺ - Kr¹⁴⁺ to Kr¹⁷⁺

• Ar⁹⁺ and Kr¹⁷⁺ used most of the time

• Over 200euA of Ar 9+ demonstrated and used in LEBT

• Beam energy 12keV/u

» Demonstrated acceleration o • Ar⁹⁺ and Kr¹⁷⁺ used most of the time

• Beam energy 12keV/u

• Beam energy 12keV/u

• Demonstrated acceleration of M/Q=7.2 with 238 U³³⁺ through MEBT with HV

• platform operated 71kV and RFQ at 100kW CW

FRIB • Over 200euA of Ar 9+ demonstrated and used if
• Beam energy 12keV/u
• Demonstrated acceleration of M/Q=7.2 with
platform operated 71kV and RFQ at 100kW
FRIB Operations
• Produce ion beams for injection into FRIB
element or a large base of stable
EMIS except for Uranium
i ion source to reach
ith M/Q > 7
L based operation)
UPP - Ultimate Performance Parameters
H. Ren, ICIS2021, September 20 - 24, 2021, Slide 10 ugh MEBT with HV

large base of stable

S except for Uranium

n source to reach

M/Q > 7

ased operation)

UPP - Ultimate Performance Parameters

_{0, ICIS2021, September 20 - 24, 2021, Slide 10}

- 400kW on Target (UPP) (Single Charge State) with M/Q > 7
-
-

SC ECR System Overview

- 28 GHz SC ECR ion source is based Cryocooler, on VENUS design
	-
	-
	-
- **18 GHz Klystron for commissioning**
	-
- beams
	-
- capacity 10 W @ 4K to re-condense helium in the cryostat
-

SC ECR Magnet Completed at Berkeley Met Performance Requirements **SC ECR Magnet Comp

Met Performance F

Superconducting magnet was designed thr

division at LBNL

• Magnetic field meets requirements.

• Adjustment of B_{min} demonstrated without quen

• Field cycling from 0 to the nomi SC ECR Magnet Completed at BMIN Met Performance Requirem**
Superconducting magnet was designed through ATAP
division at LBNL
• Magnetic field meets requirements.
• Adjustment of B_{min} demonstrated without quenching
• Fiel **SC ECR Magnet Completed at Be**
 Met Performance Requiremen

Superconducting magnet was designed through ATAP

• Magnetic field meets requirements.

• Adjustment of B_{min} demonstrated without quenching

• Field cycling SC ECR Magnet Completed at Berk

Met Performance Requirements

"Superconducting magnet was designed through ATAP

"Magnetic field meets requirements.

"Adjustment of B_{min} demonstrated without quenching

"Field cycling **SC ECR Magnet Completed**
 Met Performance Requi

Superconducting magnet was designed through ATA

division at LBNL

• Magnetic field meets requirements.

• Adjustment of B_{min} demonstrated without quenching

• Field c **SCECR Magnet Completed at Berkel

Met Performance Requirements**

Superconducting magnet was designed through ATAP

• Magnetic field meets requirements.

• Adjustment of B_{min} demonstrated without quenching

• Field cy

- **Superconducting magnet was designed through ATAP** division at LBNL
	-
	-
	- without quenching

 \overline{c}

 -400

 -200

- **INTEL FEITOITITATICE REQUE**

Superconducting magnet was designed through AT

division at LBNL

 Magnetic field meets requirements.

 Adjustment of B_{min} demonstrated without quenching

 Field cycling from 0 to the no
	- caused by the disassembly and reloading of the magnet support structure

Measured solenoid magnetic field.
Sextupole field. Probe cannot reach beyond z<0. Required fields 3T at extraction and
 $\frac{2.5}{\sqrt{1.25}}$ Area where field should be > 2T 4T at injection.

200

z [mm]

400

Magnet and Cryostat Assembled at FRIB Conventional Components Assembly In Progress

- Cryostat with the cold mass assembled in-house
- HV Platform utilities, rack equipment and cabling installed
- Conventional components assembly offline in progress (room temperature components such as plasma chamber, gas distribution system, etc.)

Lower Vacuum Vessel

SC Magnet Prep for Insertion

Magnet Assembled on Platform

SC ECR Magnet Cooled Down to 4 K

- HP ECR magnet was cooled to 4K with local control **HP ECR Magnet Resistance Measurement** in December, 2020
-
- Measured heat leak 1.2 W, close to design value.
■ One GM-JT cryocooler (cooling capacity ~5 Watt) is $\frac{25}{3}$ and sufficient for cooldown. sufficient for cooldown
- Resistance measured during the cooldown process. \degree 20

Thermal Analysis Results

Both GM-JT cryocoolers tested successfully
Maximum Cryo-cooling capacity 10W **Both GM-JT cryocoolers tested successfully**

• Maximum Cryo-cooling capacity 10W

• Dynamic heat load on the cryogenic

system produced by x-rays generated by

- @ 4 K
- **Both GM-JT cryocoolers t**

Maximum Cryo-cooling capacity 10W

@ 4 K

 Dynamic heat load on the cryogenic

system produced by x-rays generated by

ECR plasma can reach several Watts.

 Available RF power is 10 kW. system produced by x-rays generated by ECR plasma can reach several Watts. **Both GM-JT cryocoole**

Maximum Cryo-cooling capacity 10W

@ 4 K

• Dynamic heat load on the cryogenic

system produced by x-rays generated by

ECR plasma can reach several Watts.

• Available RF power is 10 kW.
	-

- tested offline.
- Offline testing **The Channel Communist Channel Channel**
	- for ~9 months

X-ray Damage to Components and Mitigation in Design **Example 19 Components**
 Example 19 Components
 Example 19 Components

Plasma chamber housing the ECR Plasma is floating at high verotential while warm bore of cryostat is grounded: Insulator in the version of the str

- Plasma chamber housing the ECR Plasma is floating at high voltage potential while warm bore of cryostat is grounded: Insulator in between **Example 10 Components

• Insulator Components

Plasma chamber housing the ECR Plasma is floating at high voltage

potential while warm bore of cryostat is grounded: Insulator in between

• Insulator can be damaged by X-Ra Example 10 Since PEEK is a costly option in Design Plasma chamber housing the ECR Plasma is floating at high voltage potential while warm bore of cryostat is grounded: Insulator in between • Insulator can be damaged by X-**
	-
	-
- **Examm Tungsten shield to protect the insulator**
	-
-

Plasma Chamber Welding and Pressure Test Completed **Plasma Chamber Welding and Pressure Test**

• Thermal analysis applied to improve water cooling design

• Radiused channel used to improve water flow at the injection end

• Spiral cooling channels can safely cool plasma t **Plasma Chamber Welding and Pres:**
 Completed

Thermal analysis applied to improve water cooling design

Radiused channel used to improve water flow at the injection end

Spiral cooling channels can safely cool plasma tu **Plasma Chamber Welding and School Completer Complete**
 Complete

Thermal analysis applied to improve water cooling

Radiused channel used to improve water flow at the

Spiral cooling channels can safely cool plasma tube

- **Thermal analysis applied to improve water cooling design**
-
- Spiral cooling channels can safely cool plasma tube with 9 kW operation
	-
	-
- Plasma tube is ready for water flow test, and assembly to the Magnet

Plasma Chamber Design Improvement Proposal for Discussion **provement
Sion**
Current plasma tube: 6061 Al.
• Laser welding may cause crack
with 6061 Al.
Proposal: To allow Laser
welding or E-beam welding (in **Sion**
 Sion

Current plasma tube: 6061 Al.

• Laser welding may cause crack

with 6061 Al.

Proposal: To allow Laser

welding or E-beam welding (in

vacuum)

• Tube – 6061 Aluminum

• Sleeve – 4047 Aluminum

• Extractio **Sion**

Current plasma tube: 6061 Al.

Current plasma tube: 6061 Al.

• Laser welding may cause crack

with 6061 Al.

Proposal: To allow Laser

welding or E-beam welding (in

vacuum)

• Tube – 6061 Aluminum

• Sleeve – 404 **Sion**

Current plasma tube: 6061 Al.

Laser welding may cause crack

with 6061 Al.

Proposal: To allow Laser

welding or E-beam welding (in

vacuum)

• Tube – 6061 Aluminum

• Sleeve – 4047 Aluminum

• Extraction flange –

- Current plasma tube: 6061 Al.
	- with 6061 Al.
- Proposal: To allow Laser welding or E-beam welding (in vacuum) **Sion**

Current plasma tube: 6061 Al.

• Laser welding may cause crack

with 6061 Al.

Proposal: To allow Laser

welding or E-beam welding (in

vacuum)

• Tube – 6061 Aluminum

• Sleeve – 4047 Aluminum

• Extraction flange Current plasma tube: 6061 Al.
• Laser welding may cause crack
with 6061 Al.
Proposal: To allow Laser
welding or E-beam welding (in
vacuum)
• Tube – 6061 Aluminum
• Sleeve – 4047 Aluminum
• Extraction flange – 4047 Aluminum
	-
	-
	-
	- metal is required
- **Advantage of Laser welding vs.** TIG
- Extraction flange 4047 Aluminum

 By using 6061 and 4047 no filler

metal is required

Advantage of Laser welding vs.

TIG

 Computer controlled process vs.

hand welding. A much higher

chance for success

TIG Tun - 6061 Aluminum

e - 4047 Aluminum

tion flange - 4047 Aluminum

ing 6061 and 4047 no filler

is required

age of Laser welding vs.

wuter controlled process vs.

welding. A much higher

ce for success

TIG - Tungsten Iner hand welding. A much higher chance for success

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Mapper Design and Assembly Completed

- Mapper has been developed based on mapper of SUSI at MSU
- Mapper assembled and installed to the magnet.

High Temperature Oven Design Completed **High Temperature Oven Design Condition Co High Temperature Oven Desig**

High temperature oven options: Resistive Oven, Inductive Oven

• Resistive Oven can destroyed under Lorentz forces

• Uranium Properties

• Uranium melts at 1,132 ℃ (Very Reactive)

• Uraniu • High Temperature Oven Design Comple

• High temperature oven options: Resistive Oven, Inductive Oven

• Resistive Oven can destroyed under Lorentz forces

• Uranium Properties

• Uranium Oxide sublimate (1-10 mTorr vapo **High Temperature Oven Design Comp**

High temperature oven options: Resistive Oven, Inductive Oven

• Resistive Oven can destroyed under Lorentz forces

• Uranium Properties

• Uranium Oxide sublimate (1-10 mTorr vapor pr

- High temperature oven options: Resistive Oven, Inductive Oven
	-
- Uranium Properties
	-
	-

- Adapt and improve inductive oven used at NSCL for FRIB ECRs
	-
	-
- **High Temperature Oven Design Completed**

High temperature oven options: Resistive Oven, Inductive Oven

 Resistive Oven can destroyed under Lorentz forces

 Uranium Properties

 Uranium melts at 1,132 ℃ (Very Reactive **FRIB Inductive Oven design completed. Fabrication is in progress. It will be tested on** the Artemis ion source first

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Inductive Oven ~1500 ℃
W. Lu, L.T. Sun. et al. Rev. Sci. Instrum.90, 113318 (2019)

Magnet Quench Protection and Interlocks

■ Magnet is passively protected and the position SEXTUPOLE Using internal diodes and **SERTIUPOLE** energy extraction resistors Interlocks definition completed, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and PI C programming and $\left[\begin{smallmatrix}\hline \text{OD} \\ \text{Coill} & \text{I}\end{smallmatrix}\right]$ $\left[\begin{matrix} \widetilde{\Omega} & \widetilde{\Omega} \\ \widetilde{\Omega} & \widetilde{\Omega} \end{matrix} \right]$ ത്ത ത്ത ത്ത and PLC programming and ODE \overline{ABE} OPA **OD3** testing in progressالمعا **LEXT** لفقا F3 MIN EY1 **HTS** Helium level

Helium level

Helium level

Helium level

Helium pressure

Historiage drop

Coil voltage drop

Water leak detection

Sensing stud

PS water flow

Helium pressure

Coil voltage drop

Helium level

Helium level Helium level Helium pressure HTS voltage drop Coil voltage drop Coil ramp to zero Water leak detection Vacuum vessel pressure Sensing stud PS water flow Helium level Helium pressure Power supply disable Coil voltage drop PS water flow

HP ECR Ion Source Proceeding towards Magnet and Energization and First Plasma **HP ECR Ion Source Proceeding towar**

Magnet and Energization and First Plas

Objective measures

<u>GO% design review

May 2018 V

May 2018 V

May 2018 V

May 2018 V</u> HP ECR Ion Source Proceeding tow

Magnet and Energization and First Pl

Chiective measures

60% design review

Cold mass delivered

Cold m

• Plan to develop the second SC ECR, to ensure high availability of heavy beams

HP ECR magnet @4 K on the high voltage platform

Summary

- **Summary
FRIB driver Linac system installation is complete: 46 cryomodules**
After 5 stages of commissioning, FRIB successfully commissioned with 324 cavities.
- After 5 stages of commissioning, FRIB successfully commissioned **Summary**

FRIB driver Linac system installation is complete: 46 cryomodules

with 324 cavities.

After 5 stages of commissioning, FRIB successfully commissioned

beam through the entire SRF linac to the Beam Delivery Syst (BDS) dump and demonstrated 200 MeV/u (Key Performance Parameter of the project).
- Magnet cooldown
measurement
H. Ren, ICIS2021, September 20 24, 2021, Slide 23 SC ECR magnet assembled on HV platform. Magnet cooldown completed.
- Approaching to magnet energization and field measurement

We Cannot Build FRIB Alone and Are Leveraging Expertise Worldwide

- Argonne National Laboratory
	- Liquid lithium charge stripper: stopping of ions in gas; fragment separator design; beam dynamics; SRF
- Argonne

• Brookhaven National Laboratory

- Radiation-resistant magnets: plasma charge stripper
- Fermilab
	- Diagnostics
- Jefferson Laboratory
	- Cryogenics; SRF
- **Lawrence Berkeley National Laboratory**
	- ECR ion source; beam dynamics
- Oak Ridge National Laboratory
	- · Target facility; beam dump R&D; cryogenic controls
- Stanford National Accelerator Lab
	- Cryogenics
- Sandia
	- Production target

- Budker Inst. of Nuclear Physics (Russia)
	- Production target
- GANIL (France)
	- Production target
- GSI (Germany)
	- Production target
- INFN Legnaro (Italy)
	- \cdot SRF
- KEK (Japan)
	- SRF technology; SC solenoid magnets
- -
- -
- EN (Japan)
Charge strippers
eq (Israel)
Production target
REQ
ICMF (Canada)
REF; beam dynamics
REF; beam dynamics
	-
- -

Michigan State University

Co-authors

- Haitao Ren, Guillaume Machicoane, Nathan Bultman, Xing Rao, Phil Morrison, Mykola Omelayenko, Larry Tobos, Jesse Fogleman FRIB, Michigan State University, East Lansing, Michigan, USA **Co-authors**

Haitao Ren, Guillaume Machicoane, Nathan Bultman, Xing Rao, Phil Morrison,

Mykola Omelayenko, Larry Tobos, Jesse Fogleman

FRIB, Michigan State University, East Lansing, Michigan, USA

Helene Felice, Ray Haf
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Thanks to Janilee Benitez (LBNL)
- Office of Science DE-S0000661
H. Ren, ICIS2021, September 20 24, 2021, Slide 25 **Presented work supported by the U.S. Department of Energy Office of Science DE-S0000661**

