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Introduction
The analytical model first proposed in [1,2] is under
development now. This model describes the electron
beam dynamics in a rarefied plasma. The model may be
applied for the analysis of electron beam behavior in
conventional and novel accelerators. Such analytical
study of the peculiarities of electron beam behavior in a
rarefied plasma may be useful for the development of the
plasma and ion sources like EBIS too.
In whole the character of the beam interaction with a
rarefied plasma depends on the relations between the
densities of electron beam and plasma background, on the
energy of the beam, the beam geometry, the beam phase
configuration.
Here we consider the case of the beam current before the
Alfven limit. Mathematical model is based on the method
of Vlasov equation solution which considers the kinetic
distribution function as a function of integrals of particle
motion [1,2]. Modified model [3] is used in this report to
study the conditions of steady beam transport.

Conclusions

The dynamics of an electron beam in a rarefied plasma is
investigated by means of mathematical model based on exact
analytical solution of the Vlasov equation. The case of axial-
symmetric beam with various values of the current up to Alfven
limit is considered. Dynamics of such a beam is essentially
nonlinear. The equation for the beam radius is solved numerically
with the help of MATLAB. In quasineutral regime the possibility
of the beam propagation in plasma depends on the relation
between the beam current and beam emittance. Depending on its
initial parameters the beam transportation may be steady.
The analytical model applied allows to predict the beam behavior
with most physical generality and scalability. The results obtained
show the limits of the model applications as well.
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Fig.2. Dependence of the REB radius on the longitudinal coordinate
z. Initial beam parameters are: R(0) = 2.0, R'(0)=0, ε = 0.5. The
value of the current i lies in the range from 0.0634690 and
0.0634691.

Fig.1 Dependence of the beam radius on the longitudinal coordinate
z. Initial beam parameters are: R(0) = 1.3, 1.4, 1.5, 1.6, 1.7, R'(0) = 0,
ε = 0.5 and 1.0, i = 0.1.

The Figures 1 and 2 show some results of numerical solution of Equation 1.
Figure 1 illustrates the betatron oscillations of the beam radius for various
values of initial beam parameters. Figure 2 illustrates the possibility of steady
beam transportation under specific initial conditions.

This equation corresponds to an axial-symmetric beam characterized by
radius R, transverse emittance ε, and current i. The equation of the beam
radius oscillations is essentially nonlinear and should be solved numerically.
In our work the solution of the Eq.1 was obtained by means of MATLAB.

Equation 1 describes the electron beam propagation in a rarefied plasma before 
the pinch. In the Equation all the variables and parameters are dimensionless.

(1)

(Here is the part of the code)

f1=@(x,y,yy) yy;
f2=@(x,y,yy)((u^2)*(1+(1/2)*yy^2)-
2*I*y^2/((4+2*yy^2+2*u^2/(y^2))^(1/2)))/(y*(y^2+y^2*yy^2+(
u^2)/2));
a=c1;
b=c2;
h=c3;
n=(b-a)/h;
x(1)=a;
y(1)=c4;
yy(1)=0;
for i=1:n

m1=h*f1(x(i),y(i),yy(i));
k1=h*f2(x(i),y(i),yy(i));
m2=h*f1(x(i)+0.5*h,y(i)+0.5*m1,yy(i)+0.5*k1);
k2=h*f2(x(i)+0.5*h,y(i)+0.5*m1,yy(i)+0.5*k1);
m3=h*f1(x(i)+0.5*h,y(i)+0.5*m2,yy(i)+0.5*k1);
k3=h*f2(x(i)+0.5*h,y(i)+0.5*m2,yy(i)+0.5*k1);
m4=h*f1(x(i)+h,y(i)+m3,yy(i)+k3);
k4=h*f2(x(i)+h,y(i)+m3,yy(i)+k3);
x(i+1)=x(i)+h;
y(i+1)=y(i)+(1/6)*(m1+2*m2+2*m3+m4);
yy(i+1)=yy(i)+(1/6)*(k1+2*k2+2*k3+k4);

end 
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