The H  multiaperture source NIO1: gas conditioning and first cesiations
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ABSTRACT (a) gas input G3 | Rt:l r‘ [I; (c) e
e|n NIO1 (Negative lon Optimization step 1), a H ion source installed at RFX ol 2] ) g7 oo %
operated in continuous mode, gas conditioning was needed to improve H- gampmmi}:% m;;{;{‘m N ; 120 | N le Al ﬁ
current density j. (up to 30 A/m?) in Cs-free regimes, s B y
eInstallation of a cesium oven gave a larger increase of current (with a peak ;:f A M o 5 N =
of 67 A/m?). progressively limited also by a rapid overcesiation permanent magnet (PMD = . A %)%) e ;% i w?]
eOther limiting factors may be: a narrow bias plate mask (now enlarged); =i Z o LA Deck HVD _m@f - oo
mismatch between current density and applied voltage, as shown by here  Fig. 2 (a) NIO1 main section; note that High Resolution (Hres) and Low Resolution (Lres)
reported new simulations, instability of good conditions spectrometer fibers are multiplexed a CF16 port, where also a second gas input G2 is

eFurther improvements for Cs-based regime include a moderate oven  provided; photomultiplier (PMT) is placed on a CF16 port below; (b) scheme of power
reservoir temperature, careful tuning and a substantial increase of beam  Supplies (see also Figs. 2 and 4.a in Ref[10]; (c) scaling of voltage and power on

voltage, and power handling capability electrodes EG and PA vs j;

INTRODUCTION SIMULATIONS

_ , o , Based on empirical emission model[11], with user guessed parameters for
e Large D- ion sources [1-4] are required for neutral beam injectors; ion

orcity y > with ol dencity i initial energy =3eV; fast to run; similar [8,10] or more complete model [9]
current density j; must be > 200 A/m?, with electron current density jo as .t \with voltage assumed in Fig 3, onlyjI <30 A/m?is fully transported.

low as possible (so that R=]/];<1) and pulse duration > 3600 s. For H case, . . o .
in Cs-based regimes j; = 300 A/m? and Ri<1 are feasible. In Cs-free regimes, e E B
j;=30 A/m?and R=10 is expected.

*The NIO1 can be operated in continuous mode (only H, no D for safety),
so transients are easily evidenced: to stabilize them, the so-called ‘gas

conditioning’ was developed (one day of a gas like Xe or O,, few days of
stable H- production). In Cs-free regime j about 25 to 30 A/m?2 (with Fig 3. (a) xz projection of electrode wireframe and simulated beams (e”, H") with j= 25

beam voltage V,,=11 kV) and R, < 5 was reached. A/m?, Ri=5, Vog=11 kV, V,=1.3kV. (b) as 'a’, with ji= 35 A/m*

* From 2020 a Cs oven was installed, obtaining j. up to 67 A/m? and Ri<0.5 SELECTED RESULTS and IMPROVEMENTS under test
for a while; then j. rapidly decreased for overcesiation ~(c) | MO plsma chanver | (d) () v

* NIO1 design compensates x deflection (seen by CAM2) with ADCM [5,6]; y o | =
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deflection (uncompensated) is seen by CAM1 (and CAM3). o 111 g Rt SN
l l ' I " : /! duct = Z w | [mA] fi A P o ?
* A large filter field can be provided in NIO1; optimum value is |B® |=11 mT E§ hhhhhh / = E | E N A
. . ot valve O = 100? ~ve- Ry, free ‘\‘\ -4
for Cs-free regime and <7 mT for Cs-based regime | | A \/
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Fig 4: (a) old BP mask (b) new BP mask; (c) Scheme of Cs oven, heaters and TCs
placement with detail: (d) 3D view of TC inlet clamp; (e) Comparison of 2019 Cs-free
results i <0 (id=-4,-3,-2,-1 are conditioning respectively with Ar, N,, O, and Xe) and
2020 Cs-based results, where i, enumerates the result group (each group contains
one or more days)

*The peak j; = 65 A/m? was obtained for few h in i;=3 group (one day), see Fig 4.
*Oven temperature T .. (fig 4.c) should be much moderate (<400 K, to be
tested soon): tighter thermocouple connections (4.d) are progressively
SETUP mounted for better control;

ELECTRONICS and CURRENTS *The bias plate mask (4.a) is now enlarged (4.b) to allow more plasma in
NIO1 has two bias systems and several power supplies (PS; ion current | is  the extraction;

estimated as the output I, of the V,, PS (also called AGPS) minus known  *At high current, optics seems more difficult (need more tuning time and
leakages I,=I,-V,./R, (see fig 2 b); electron current I, is the output of  voltage), but less beam y-deflection appears

extraction grid PS (or EGPS). Then j=I./A, and j=I/A, with area A,=410 ) 5= 2w camimsis vecise Somt (o) biomm cAMIm8I36 Voot b (o T s
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mmA2. Calorimetric current |I_; and current |4, on CFC (carbon fiber | -40_
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Fig 1 (a) 3D overview of NIO1, z is the beam axis, x is the vertical (b) cut view of
source, looking towards plasma grid; (c) view of Cs oven, placed below ion source
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SOURCE/BEAM OPTICAL DIAGNOSTICS 40 . 40_ 0 ooet ~
* Plasma light intensity measurements (monitoring of plasma conditions) Ve tgmm D e tgmm
* High resolution Spectroscopy (impurities, Balmer series, Fulcher band, Cs |~ Fig 5 (a) Typical Cs-free optics, at cryopump on, la=1.6 mA, before O2 and Xe
emission); also Low resolution Spectroscopy conditioning (dataset 25096, CAM1); (b) Cs-based optics, cryopump off, 1,=19 mA, | =
e Laser Absorption Spectroscopy (neutral Cs density) 11 mA (dataset 28136, CAM1); (c) profile comparison.
e Cavity Ringdown Spectroscopy (H- density, in preparation) CONCLUSIONS
* Lateral visible cameras (beam deflection and divergence) The large database of NIO1 dataset helped to recognize complex
* Beam emission spectroscopy (deflection, divergence, stripping losses) phenomena in H- ion sources, including filter magnet and radiofrequency
e calorimetry on CFC target (beam deflection and divergence, beam current) tuning: 1) for Cs-free conditioning gas was discovered; 2) For Cs-based
REFERENCES regime, some indication of optimal temperature was given; 3) beam optics
2 oo ¥ ot al. (2019), Nuct. Pusion 39 086055 is better understood
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