#17 Study of negative ion beam emittance characteristics using 3D PIC—MCC simulation
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1) It is verified that the negative ion beam changes from a diverging beam to a converging beam due to a

electrostatic lens effect as the voltage ratio V,./V.,, Increases.

2) It 1s shown that the Gaussian components are caused by the negative ions extracted from the different

plasma meniscus region, that is, the central region or the region near the edges of the meniscus.

3) The peaks of the negative ion beam components extracted from the upper and lower meniscus region

shift in the opposite direction each other as the voltage ratio V.. /V.,, increases, which corresponds that
the negative ion beam changes from the diverging beam to the converging beam .

4) The number of the negative ion trajectories extracted from the upper meniscus region is not the same as

that extracted from the lower meniscus, which reflects that the negative ion density spatial profile is not
symmetry with the axis.

spatial profile.

5) It is considered that the asymmetry of the plasma meniscus results from that of the negative ion density



