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Motivation
 NNBI systems & particle accelerators use RF-driven negative H/D ion sources

 Low RF » 1-2 MHz, low pgas ≤ 1 Pa, high power densities 10 Wcm-3

 Low temperature H/D plasma at Te » 10 eV & ne » 1018 m-3

 RF power coupling not optimized → electric arcs →  performance & reliability limited

 Modeling approach to study self-consistent RF power coupling

 Validation with experimental measurements from RF ion source

Modeling approach
EM model of the driver (3D) calculates Joule and eddy current losses in RF network 

components (Faraday screen & RF coil) without plasma in first step → network losses 
Rnetwork and Lnetwork

 Combining EM model & RF power coupling fluid model facilitates
self-consistent description of the RF power coupling

Conclusion
Validation successful

• Derived formulation provides correct description of the RF power coupling in RF ion sources
• Electron viscosity mitigates ponderomotive force → quantitative description of plasma compression
• Neutral depletion at low pressures captured → stable numerical solution at 0.3 Pa

ITER prototype RF negative ion source
driver at the BUG test bed for model validation[1]
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Investigation of H2 & D2 discharges

 Numerical trends scale as experimental ones
 Cusp field in driver back plate not modeled → probable reason 

for systematic differences in modeled & measured Te & ne

 First step towards deuterium model by increased ion masses
 Decreased wall losses due to larger mass explain larger 

plasma density & RF power transfer efficiency in D2

Impact of neutrals description on RF power coupling

 Modeled & measured trends agree well, when Navier-Stokes used for neutrals
 Modeled Te(PRF) ↑ ⇒ ηe,visc ↑ ⇒ mitigation of plasma compression by RF current 

diffusion ↑ ⇒ ne,s ↑ ⇒ modeled η as in experiment!
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RF power coupling fluid model (2D, cylindrically symmetric)[2]

Most important
model outputs
Te, ne

Je = -e ne ue

Pplasma

I0

Figures of merit

Particle balances: e, H , H2 & H3, H, H2 → nj

Momentum balances → uj

Energy balances → Te, TH & TH

Poisson equation → ɸplasma

Wave equation → ERF & BRF
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Investigation of RF power coupling mechanism in
RF ion sources
● RF coupling described by electron momentum & energy balance, coupled to Maxwell’s equations
● Quasi steady-state values obtained from time harmonic approximation for              
● Drift-diffusion electron flux (including Lorentz force) for r- and z components:

● Plasma compressed by RF Lorentz force: ponderomotive effect
● RF current diffusion introduced by electron viscosity decreases RF current density 

● Used local approximation for the viscosity
in agreement with the observed local skin effect regime

● Numerically obtained
electrical & plasma 
parameters in good
agreement with
experimentally obtained
ones only if the Lorentz
force & viscosity are
retained

 RF Lorentz force & viscosity essential for steady state numerical solution
within the error bars of the experimental measurements
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Solve highly coupled PDE system

RF-matching
L-network (C1 & C2)
(no matching transformer)

RF generator:
ωRF/2π = 1 MHz

PRF ≤ 100 kW
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