

Contribution ID: 73

Type: Poster

nuCARIBU: An Upgrade for the CARIBU Facility at the Argonne Tandem Linac Accelerator System

The Californium Rare Isotope Breeder Upgrade (CARIBU) facility is changing the mechanism for creating neutron-rich fission products. Spontaneous fission from a 252 Cf source has provided beams to support the low energy and accelerated-beams ATLAS programs. 252 Cf has a 2.65-year half-life, requiring the source to be replaced every three years to maintain high beam intensities. Fabricating an appropriately thin 252 Cf source to efficiently release the fission products has been challenging. The solution to these problems is nuCARIBU, a new system that provides neutron-induced fission on actinide foils. The Best Cyclotron B6P System (6-MeV proton beam at 0.5 mA) is chosen, utilizing a multi-cusp negative ion source extracting into a cyclotron, which uses carbon foils to strip the H⁻ ions to protons. These protons are delivered to a ⁷Li target to produce neutrons. The fast neutrons are moderated to thermal energies to induce fission in an actinide foil, providing neutron-rich fission products.

E-mail for contact person

jmclain@anl.gov

Funding Information

This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility.

Primary author: MCLAIN, Jake (Argonne National Laboratory)

Co-authors: DICKERSON, Clayton (Argonne National Lab); SAVARD, Guy (Argonne National Laboratory); SONG, Jeongseog (Argonne National Laboratory); NOLEN, Jerry (Argonne National Laboratory); GREENE, John (Argonne National Laboratory); GOTT, Matt (Argonne National Laboratory); VONDRASEK, Richard (Argonne National Laboratory)

Presenter: MCLAIN, Jake (Argonne National Laboratory)

Session Classification: Poster Session 1

Track Classification: Radioactive ion beams, charge breeders and polarized beams