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Abstract

The GTS-LHC ECR ion source delivers ion species for the 
physics programme of the CERN accelerator complex. 

Stability and reproducibility are key parameters for a 
successful operation. Therefore the source requires 
regularly intervention by an expert. 

The integrated functionality of data logging in the 
control system of the CERN accelerator complex 

allows to store all relevant control values and beam 
properties for the different machines. For the years 2015, 
2016 and 2018, the data for the lead ion operation of the 
GTS-LHC ion source were extracted from the logging 
and treated with various statistical methods to identify 
recurring patterns in the operational settings of the 
source. If such patterns exist, they may be used in the 
future for the control of the source by semi-automatic 
feedback loops. 

The main study performed was based on a cluster 
analysis using the Optigrid algorithm, which is well 

suited for problems with a high number of parameters. 

Introduction

The setting up and tuning of the source depends 
presently on the experience of a team of source experts. 

As this team is very small it is a single point of failure 
for the operation. To allow a more person independent 
and more standardized operation a request to develop 
software tools to support the operation of the source 
was made (GTS-LHC operation support – GHOST).
These tools should help to improve the source stability 
and reliability and to reduce the necessity of the 
intervention of an operator or source expert.

The settings and acquisitions used in this analysis 
are the most commonly adjusted settings (source 

solenoids, microwave power, gas injection, oven power, 
bias disk voltage). The acquisitions are values from the 
beam current transformers along the linac (one directly 
after the charge separation and one at the end of the 
linac) and the current of the high voltage power supply 
of the source. 

The settings of the two ovens were not used in the 
clustering itself, but were included in the analysis of 

the resulting clusters. Since the need for ramping up 
the oven during one lead cycle is already well known, 
the oven power was excluded from the clustering input 
parameters to reduce the dimensionality and increase 
interpretability of the results.

This present cluster analysis confirmed the qualitative 
experience of the operators. No dedicated recurring 

pattern in the source settings could be found. Neither 
between the years and nor even within the years. 

All source settings are within certain boundaries, but 
there is no single set or a couple of sets of settings 

that can be used to get directly to a stable and reliable 
source operation. None of the found clusters can be 
used directly to create one or several GHOST modules 
which can run the source at an automatised or semi-
automatised mode. 

More sophisticated time series analysis tools, e.g. 
LSTM neural networks, could potentially discover 

more complex relations than investigated in the study, 
and could in the future be used for (mid- or long-term) 
beam quality prediction. 

At the moment in all these studies the source is 
treated as a black box. Additional information 

about the interior of the box beyond the high voltage 
drain current and the ion current will help to improve 
the understanding  of the source behaviour and the 
operation. A way to gain knowledge about the processes 
inside the source (inside the plasma) could be optical 
emission plasma spectroscopy. This spectroscopy can 
be performed parasitically. A corresponding study is in 
preparation.

Conclusions and outlook

The clustering algorithm

Clustering is the process of grouping together data 
points that are similar. Clustering is an unsupervised 

learning method, i.e. it has to discover unknown 
classes in the data. The goal is to find similar settings 
of the source using clustering. So one will consider two 
points as similar if they represent the same setting of 
the source up to some variation that accounts for small 
changes or noise.

When it comes to the actual clustering, there is a 
wide range of algorithms to chose from, and while 

there exist several measures to grade clustering results 
it is generally not possible to say which algorithm will 
be the better one, as this depends on the actual use 
case and definition of similarity. In the presented case 
clustering for unsupervised learning is used, meaning 
that the output classes are not known a priori. Hence 
the results have to be evaluated to see if the determined 
clusters fit the requirements. 

For this analysis the Optigrid algorithm 
developed by Hinndeburg an Keim was selected. 

This algorithm was developed to solve the problem 
of clustering in high dimensional data (known as the 
„Curse of Dimensionality“).

The Optigrid algorithm partitions the input space 
into a grid, where each cell represents one cluster. 

Each cluster is described by its median and standard 
deviation in percent of mean, to capture the centre 
and dispersion of a cluster. In the present case, the 
two values can be interpreted as the setting that is 
represented by the cluster, and the variability of the 
setting, i.e. whether it was almost constantly on one 
value or if there were fluctuations. 

After each point is assigned to one cluster, it is 
possible to calculate attributes for each cluster, e.g. 

its duration and the number of high voltage breakdowns 
while it was active.

The clustering algorithm
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General observations 
and cluster size

The calculation delivers a vast number of clusters 
which cannot easily combined to bigger clusters 

without losing information. But it can also be seen that 
if one orders the clusters by there duration, the size of 
the clusters drop quickly.

There are few large clusters and many small ones.
There are only small differences between the years 

and the operation modes. The stable operation mode 
in 2016 seems to have the highest number of long 
clusters. The longest one has a duration of 142 hours. 
But this is still short compared to the yearly operational 
period of around 6000 hours or compared to the time 
between two oven refills (two weeks = 336 hours).
The duration accumulated per cluster is for most of 
the cases less than 30 hours. Compared to the yearly 
operational period this shows that the settings are 
varied quite often. There is no dominant setting.

A detailed look at the internal distribution of the 
clusters in time also reveals that some clusters are 

continuous in time, while other are split up into many 
small fragments.

2018 stable
2016 stable
2015 stable
2018 unstable
2016 unstable
2015 unstable

du
ra

tio
n/

h

0

20

40

60

80

100

120

140

index
0 20 40 60 80 100 120 140 160 180 200 220

Cluster and operational 
parameter

The RF power was chosen to give an impression of 
the distribution of the medians of the clusters. The 

Figure shows the medians of the clusters for RF power 
of the stable period in 2016. 

The clusters are ordered by size. The lower index 
represents the larger cluster. One can see that the 

used settings do not accumulate around a certain value 
but only lie in a (relatively broad) range.
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Cluster and oven operation

Between two oven refills there is normally a 
period of two weeks (14 days = 336 hours).

In the Figure  the duration of the clusters is plotted 
in relation to the time after the last oven refill for the 
stable operation  periods in 2016. With the colour the 
number of the fill in the respective year is coded. There 
does not appear to be a relation between duration and 
time after oven refill.

The first week (t < 168 hours) after an oven refill the 
source needs normally very little tuning. So one could 

expect to find longer clusters in this time periods.  But 
large clusters can be found at any time of the oven running 
period. No moment is preferred for longer clusters. 
In the second week (t > 168 hours) after an oven refill 
the source needs to be tuned quite often to keep the 
intensity and the stability. So one would expect to see a 
more short clusters there. This could not be confirmed 
by looking only at the cluster duration.

After an oven refill there is normally only little tuning 
on the source. So one may have the expectation that 

the two time periods before and after an oven refill fall 
into the same cluster. But also this expectation could 
not be confirmed.
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Source and linac performance

The Figure below shows the ion intensity of the Pb54+ 

beam at the end of the linac for the stable periods 
of the three different years. Stability was measured by 
defining threshold in beam intensity and variation in 
time windows of several hours.

There are clear differences between the years visible.
The increase from 2015 to 2016 was the result of the 

modification of the low energy beam transport.

During 2016 the best average intensity could be 
delivered. In 2018 the intensity was lower due to 

problems with the stripper foils (the beam at the end of 
the linac is stripped from Pb29+ to Pb54+ in a thin carbon 
stripper foil). 

The very high values (currents > 40 eµA) for the year 
2016 are an artefact, as for degrading stripper foils 

the charge states Pb53+ and Pb55+  can sneak through 
the charge state filtering after the stripper and so 
the integral current measured in the beam current 
transformer becomes higher. 

In the following Figure the ion beam intensity at the 
exit of the linac is plotted for 2016. Stable periods are 

marked in black, unstable periods are marked in red.

If one compares the integral of stable with the unstable 
periods per year one get 62.8 % for 2015, 70 % for 2016 

and 68% for 2018. One can see that in 2016 there were 
long periods of stable beam operations, in particular 
during the month of November, when the 2016 heavy 
ion run took place.
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