

Beam Formation Studies on the CERN IS03b H⁻ Source

J Lettry¹, A Vnuchenko¹, S Bertolo¹, C Mastrostefano¹, M O'Neil¹, F di Lorenzo¹, Y Coutron¹, D Steyeart¹, B Riffaud¹, J Thiboud¹, R Guida¹, K Kapusniak¹, C Charvet¹, B Teissandier¹, P Moyret¹, F Roncarolo¹, S Bart Pedersen¹, M Duraffourg¹, C Vuitton¹, U Fantz², S Mochalskyy², D Wunderlich², M Lindqvist², N den Harder², A Mimo², S Briefi², A Hurlbatt², T Kalvas³, T Minea⁴, A Revel⁴

¹CERN, Esplanade des Particules 1, P.O. Box, 1211 Geneva 23, Switzerland

² Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany

³ Department of Physics, P.O. Box 35 (YFL), 40014 University of Jyväskylä, Finland

⁴Laboratoire de Physique des Gaz et des Plasmas, UMR 8578 CNRS, Université Paris-Saclay, Bat. 210, rue Henri Becquerel, 91405 Orsay, France

Asymmetries in CERN's Linac4 H^- source :

The source's plasma is of the Radio Frequency Inductively Coupled Plasma type (RF-ICP), without magnetic cusp. Vertical downward oriented filter- and electron dump-dipolar magnetic fields expand over the plasma chamber, beam-formation, beam-extraction and electron dump regions and induce *B*-field horizontal asymmetry. The H⁻ beam is generated via combined volume and caesiated plasma surface modes, the latter induces a radial asymmetry characterized by an increased current density close to the plasma electrode surface; *I-density radial asymmetry*

 \blacktriangleright An ONIX model to simulate beam formation of the Linac4 H⁻ source is being developed by A. Vnuchenko et.al., poster **# 74**

Aims and goals of this contribution:

- > Develop beam diagnostics methods and collect data to :
 - \checkmark Provide plasma parameter benchmarks of the plasma bulk and of the beam formation region via Optical Emission Spectroscopy (OES)
 - Measure Beam Emission Spectroscopy (BES) closest to the H⁻ source
 - Develop a 2D Beam profile measurement technique to complement the Emittance measurement.

Future work:

- Validate the plasma parameters input to ONIX
 - Extract from ONIX simulations the phase space of the H⁻ and electron beams
- Transport the "ONIX" beam using IBSimu to the diagnostics locations
- Compare the simulated beam projections to BES, Profile and Emittance measurement and analyse the impact of asymmetries on the beam formation process and beam properties.

Optical Emission Spectroscopy

OES Al-mock-ups of the PE75 plasma electrode, Flat and 45 deg. Mirrors

E-P-meter : Slit-Grids distance: 200 mm Grids: 40 active wires, interval: 0.75 mm Effective meas. surface : $30 \times 30 \text{ mm}^2$

Profile: Beam simulation will be compared to the profile x-y distributions, however, the H⁻ beam must be converging to match the detection active surface, and a scaling is applied to correct for the 200 mm drift and obtain the beam shape at the slit plane.

Vertical - Emit. y y' Distribution

While extracting beam parameters form xx', yy' emittance projections how could one possibly prove a hollow beam ?

Results Conclusion and Outlook:

- > New Beam diagnostics methods were developed and operated at the Linac4 test stand
- > Data were collected over a broad parameter space, $(H^-, D^-, p, P_RF, H_2_pulse, E_extr.)$
 - Optical Emission Spectroscopy (OES) of bulk plasma and for the first time of the beam formation region
 - Beam Emission Spectroscopy (BES) closest to the H⁻ source
 - 2D Beam profile measurement and standard Emittance measurement.

> Future work:

- Analysis of the OES results
- Develop new plasma electrode geometries optimized to match ONIX simulation constraints.
- Develop a setup providing Horizontal and Vertical BES viewports
- Run ONIX at nominal plasma densities and compare simulation to measurement...