

Application of Thomson scattering system toward direct measurement of meniscus shape of the negative ion beam Junichi Hiratsuka, Kentaro Tomita¹, Mieko Kashiwagi, Atsushi Kojima, Glynnis Mae Q. Saquilayan, Takashi Kaihori, Masahiro Ichikawa, Hiroyuki Tobari, and Kazuhiro Watanabe

e-mail: hiratsuka.junichi@qst.go.jp National Institutes for Quantum and Radiological Science and Technology (QST), ¹Hokkaido University

Summary

- Thomson scattering with excellent spatial resolution was applied to negative ion source for the first time.
- **Optical system was designed to meet the measurement in the ion source.**
- Feasibility of direct measurement of extraction region with Thomson scattering was confirmed with < 0.5 mm spatial resolution at n_e
 - = 3 × 10¹⁶ m⁻³, which contributes to precise prediction of negative ion trajectory and design of negative ion accelerator.

Introduction	Lineartainty of aquinatential ourfage		
 Target of Long pulse acceleration For JT-60SA: 500keV, 130A/m² 	Plasma ² , 100s Extraction region	Precise prediction of negative ion trajectory ← Understanding potential profile of extraction region	Direct measurement of extraction region by applying Thomson scattering
 For ITER: 1MeV, 200A/m², 360(0s	 Different mechanism from positive ion source 	Excellent spatial resolution, High sensitivity
Issue: unclear physics of extraction region of negative i	ons PG CS C	due to surface production of negative ion → Direct measurement can solve the essential issue of negative ion sources.	 Developed for diagnostics of micro-structure of industrial

Conventional simulation of negative ion trajectory and heat load has not been consistent with experimental result.

Φ14 EXG AG

Unexpected trace around beam aperture after beam acceleration

<Challenging Requirements> High spatial resolution

- \rightarrow Density profile within 14mm aperture
- Non-disturbance, but direct measurement \rightarrow Langmuir probe is unavailable due to high electric field and disturbance of plasma

Application of Thomson scattering with high spatial resolution developed in Hokkaido-University K. Tomita, et. al., nature scientific reports, 7 12328(2017)

Idea to investigate extraction region

Try to detect equipotential surface of

Design of the Thomson scattering measurement

