Keio University

Effect of Electro-Negativity on Beam Extraction in Negative Hydrogen Ion Sources

Katsuya Hayashi, Keio University

Co-Authers: Kazuo Hoshino, Keio University Kenji Miyamoto, Naruto University Akiyoshi Hatayama, Keio University

Introduction

Control of **effective distance d_{eff} between** the Plasma Grid (**PG**) and the Extraction Grid (**EG**) (or equivalently **the position of the plasma meniscus**)

is very important to obtain good beam quality

Plasma meniscus : flat

Extracted beams : Parallel beam Perveance Matching Plasma meniscus : Convex 凸 comes out towards the EG

Extracted beams : diverged

Plasma meniscus : Concave 凹 penetrates into the source region Extracted beams : converged but over focused

Introduction

Parameter dependence of the effective distance d_{eff} between PG and EG (or equivalently the position of the plasma meniscus)

What are the key parameters to determine/control d_{eff}? How d_{eff} depends on these key parameters ? How to control the plasma meniscus ?

For ordinary plasmas with only positive ions and electrons: well-known simple theory tells us:

(1)
$$d_{eff} = \left[\left(\frac{4\varepsilon_0}{9} \right) \left(\frac{2e}{M_i} \right) \frac{V^{3/2}}{j_s} \right]^{1/2}$$

V: extraction voltage *j_s*: ion saturation current *M*; ion mass

$$d_{eff} \propto rac{V^{3/4}}{n^{1/2}}$$

ex.

(2)

However plasmas including negative ions : key parameters and dependence are still unclear

Final purpose of this study is **to make clear key parameters and dependence of** d_{eff} **on these key parameters**

3D PIC Model (Model Geometry and PIC Basic Eqs.)

Keio University

Numerical Domain of 3D PIC simulation for a Hydrogen Negative Ion Source

[1] S. Nishioka, et al., J.Appl.Phys. **119**, 023302(2016).
[2] M. Lyndqvist, et al., J.Appl.Phys. **126**, 123303(2019).

3D Electrostatic PIC Basic Eqs.

Eq. of Motion

$$m_{j} \frac{d\boldsymbol{v}_{j}}{dt} = e_{j} \left[\boldsymbol{E} + (\boldsymbol{v}_{j} \times \boldsymbol{B}) \right]$$

+ Monte-Carlo Collision
 $(j = H^{+}, H^{-}, \text{ electron})$

Poisson's Eq.

(4)
$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}$$

$$\rho = \sum_{j} e_{j} n_{j}$$

Keio University

3D PIC Model (Model Geometry and PIC Basic Eqs.)

Result 1 : Comparison of n_{H+} Density Profile and Plasma Meniscus

For both cases, the extraction voltage *V* and plasma density at the sheath edge *n* are kept the same: V = 7kV, $n = 0.75 \times 10^{18}$ m⁻³

However, plasma with H- ions

d_{eff} : larger with small surface H⁻ production (Case A) d_{eff} : smaller with large surface H₋ production (Case E)

Result 2 : 2D Profile of Potential near the Extraction Hole

Equi-contour of Electric Potential near the Extraction Hole

Case A : small surface H- production

For both cases, the extraction voltage V and plasma density at the sheath edge n are kept the same: $V = 7 \text{kV}, n = 0.75 \times 10^{18} \text{ m}^{-3}$

However, plasma with H- ions

d_{eff} : larger with smaller surface H⁻ production (Case A) d_{eff} : smaller with larger surface H₋ production (Case B)

Case B : large surface H- production

Why **? What is the key parameter for the effective distance d_{eff}**?

Electro-negativity α : case $A \to low~case~B \to high~deff$ with surface H- production is largely depends on Electro-negativity α neat the PG.

Main Plasma Parameters for 3D PIC simulation

Parameters	Values used for PIC simulation
Electron Density	$1.8 \times 10^{17} \text{ m}^{-3}$
Electron Temperature	0.8 eV
H ⁺ Ion Temperature	0.3 eV
H - Ion Temperature	 a. 0.1 eV (Volume Produced H⁻) b. 1 eV / 0.25 eV (Surface Produced H⁻, Initial Energy/Temperature)
H2 molecular density	$1.88 \times 10^{19} \text{ m}^{-3}$ (equivalently 0.3 Pa)
H2 molecular Temperature	0.1 eV
H atom Temperature	0.3 eV
H/H ² Density Ratio	0.5

Systematic 3D PIC modeling of H⁻ extraction for the NIFS R&D H⁻ source

Detailed Information ex. Model Geometry of Plasma Chamber PG (Plasma Grid) EG (Extraction Grid) AG (Acceleration Grid) Poster Presentation

Poster #17 K.Miyamoto et al.:

" Study of negative ion beam emittance Characteristics using PIC-MCC simulation"

Modeling of NIFS R&D H⁻ source by K. Miyamoto, *et al.* Spatial Profile of H⁺ Ion Density n_{H+} near the Extraction Hole (with Volume and Surface H⁻ production) Case A : Low α near the extraction hole Case B : High α near the extraction hole

Keio University

In Case B, i.e, in High- α case,

x (mm)

plasma meniscus is more pushed towards outside, i.e. towards the EG.

Position and shape of the plasma meniscus largely depends on Electro-negativity α neat the Pos

Modeling of NIFS R&D H⁻ source by K. Miyamoto, *et al.*

1D Spatial Profile of Electro-negativity ($\alpha \equiv n_{H-} / n_e$) along the *z*-axis (with **Volume** and **Surface** H⁻ production)

38

39

40

42

45

11

Case B : **High** α near the extraction hole

Keio University

In Case A, i.e, in Low-α case, EG voltage penetrates more deeply into the plasma source region, while, in Case B, EG voltage is well shielded, and not so deeply penetrates into source region.

Electro-negativity α near the PG is a very important parameter to control the plasma meniscus.

Comparison with Simple Analytic Theory (by .K.Miyamoto)

Electro-negativity α near the PG is a very important parameter to control d_{eff} (the plasma meniscus).

For the case with surface H- production, K.Miyamoto has also derived the expression for $d_{e\!f\!f}$ and also strongly depends on the electro-negativity α .

Summary

Using 3D PIC Simulation (Keio-BFX code) and simple Analytic Theory Effects of H⁻ density (density ratio of H⁻ ions and electrons) have been studied on

- Plasma shielding distance of the extraction voltage into the source plasma i.e. Effective distance between the PG and EG : deff
- Plasma meniscus
- Ordinary H⁺- electron plasma (plasma density : $n=n_i \sim n_e$)

$$d_{eff} \propto rac{V^{3/4}}{n^{1/2}}$$

Plasma with surface produces H⁻ ions (H⁻ density n_{H_-} and $n=n_i \sim n_e+n_{H_-}$) d_{eff} : largely depends on the ratio $\alpha = n_{H_-} / n_e$ around the extraction hole

$$\alpha$$
 α low : d_{eff} β large , while α β high : d_{eff} β small $_{14}$

Summary

- The same tendency has been obtained by another 3D PIC simulation (by Miyamoto) for the NIFS H- R&D source
- These PIC simulation results are also supported by comparison with simple analytic theory of the effective distance between the PG and EG (developed by K.Miyamoto)
- These simulation and theoretical results suggests :
 - Control concept of the effective distance $d_{\rm eff}$ / meniscus shape (in other words how to get the perveance matching)
 - in the plasma with H⁻ ions is shown to be largely different from in the ordinary plasma without H⁻ ion
 - One of the key control parameters is the electro-negativity (density ratio $n_{H_{-}}/n_{e}$) around the extraction hole

