Design and Operation of a Penning Ion Trap Source for the CHIP-TRAP Mass Spectrometer

Madhawa Horana Gamage - 09/20/2021 - ICIS Supervisor- Dr. Matthew Redshaw Central Michigan University

- > Motivation
- Structure of CHIP-TRAP
- > Design of Penning Ion Trap Source(PITS)
- > Simulation and Experimental Results
- Calibration of PITS
- > Conclusion

Motivation

Electron Capture Decay of ¹⁶³Ho for absolute **Neutrino -mass determination**

Electron Capture Decay of ⁷Be for **Sterile Neutrino studies via momentum reconstruction (BeEST experiment)**

Q_{EC} value to ~1 eV

Motivation

Motivation

High-precision mass measurements for - Neutrino Physics (¹⁶³Ho, ⁷Be)

$$^{163}\text{Ho} + e^{-} \rightarrow ^{163}\text{Dy}^{*} + n_{e}$$

$$^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + \nu_{e}$$

- Tests of Special Relativity (35,36 Cl) E = mc²

$$^{35}\mathrm{Cl} + n \rightarrow ^{36}\mathrm{Cl} + \gamma' s$$

Versatile ion sources for a range of isotopes

- Laser ablation source for solid materials

Poster - Precise Measurement of the ⁷Be and ¹⁶³Ho Electron Capture Q-value for Neutrino Studies (Ramesh Bhandari – 21st Sep. Tuesday 9AM PDT)

- Electron impact ionization source for gases (^{35,36}Cl)

<u>A Penning Ion Trap Source</u>

CHIP-TRAP

CHIP-TRAP

Penning Ion Trap Source (PITS)

- > **PIG-type ion source**
- > Trap ions inside a magnetic and electric field
- > Trapped ions same behavior as ions in a Penning trap

Penning Ion Trap Source (PITS)

- W thermal emitter, cylindrical shape trap, extraction electrodes and gas inlet
- Ions produced by electron impact ionization
- ➢ Trap ions in a small volume (0.8 cm³)
- Extract ions as a bunch

Simulation of PITS

- Electron beam emission
- > Ion trapping
- ➤ Ion extraction
- > Ion transport

Madhawa Horana Gamage

Simulation of PITS

- > Checked the ion transportation via Einzel lens and bender
- > Separated the Cl isotopes

Ion Transport

Cl separation

Results: Initial Test

- > Ionization of residual gas in trap
- Release ion bunch and detect on MCP
- > Fit Gaussian profile
- **≻** FWHM = 2.44 (0.54) us

Axial Length

- > Used a 500 ns fast switch for opening trap
- > Added capacitance to reduce opening time
- Agreement of experimental data and simulation

13

- > Investigated damping effect in the simulation
- Experimental investigation with background pressure ~ 10⁻⁵ 10⁻⁶ showed no damping effect

- Leaked He gas into PITS
- Varied electron beam energy
- \blacktriangleright He ionization energy = 24.6 eV

Calibration of PITS

- Argon gas ionization
- > Fit Gaussians for each peak
- ➢ Filament bias voltage -25 V
- > Vacuum pressure of 5 x 10⁻⁶ Torr

Peak	TOF	FWHM
Н	8.17 (0.03)	0.51 (0.21)
Не	15.43 (0.02)	0.92 (0.31)
Residual Ions	31.89 (0.05)	1.68 (0.56)
Unknown	39.77 (0.06)	1.84 (0.53)
Ar	47.36 (0.05)	3.11 (0.78)

Experimental Results

- Checked PITS with different end cap voltages
- Peaks due to higher mass gases go away when the EC Voltages are increased

- > Design, simulation, fabrication and assembly of PITS completed.
- > Initial commissioning of PITS begun.
- > Agreement between experimental and simulated data observed.
- > Calibration of PITS using He and Ar gases underway.
- Future work –calibrate PITS with additional gases; use PITS to create Cl ions.

- Dr. Matthew Redshaw, Nadeesha Gamage, Ramesh Bhandari, Zachary Purcell and Dakota Keblbeck.
- > CMU Physics Department
- > National Science Foundation (PHY-1607429)
- > US Department of Energy (DE-SC0015927)

Thank You Questions ?

Penning Trap Physics

Gaussian Fittings

Calculate mass error

Row	M_Covar[][0]	M_Covar[][1]
	0	1
0	0.00151106	-7.90139e-05
1	-7.90139e-05	4.5751e-06

$$y = f(a, b, x) = a + bx$$

$$\sigma_y^2 = \sigma_a^2 \left(\frac{\partial y}{\partial a}\right)^2 + \sigma_b^2 \left(\frac{\partial y}{\partial b}\right)^2 + 2\sigma_{ab}^2 \left(\frac{\partial y}{\partial a}\right) \left(\frac{\partial y}{\partial b}\right) + \sigma_x^2 \left(\frac{\partial y}{\partial x}\right)^2$$

$$\sigma_y^2 = 1.511e^{-3}(1)^2 + 4.575e^{-6}(x)^2 + 2(-7.901e^{-5})(1)(x)$$

$$+ (0.0256)^2(b)^2$$

$$x = 33.507, b = 0.16424$$

$$\sigma_y^2 = 1.3645e^{-3}$$

$$\sigma_y = 0.0369$$

EC Voltage	Mass limit	TOF limit
5	41	49.5
8	26	39.0
11	19	33.3