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(Un)available beams at ISOLDE

 Available beams

 more than 1000 radioisotopes 

 74 chemical elements 

 lightest element: Helium

 heaviest element: Uranium

 half-lives down to ~ ms

 Unavailable beams

 Many refractory elements

Plot proposed by S. Rothe
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ISOLDE target and ion source unit

2 cm

Principle design

Part of the 

target station
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Ion sources at ISOLDE

Ion source requirements

1. Compact and radiation hard

 Integrated in the target unit

 handling by robot required

2. Withstand pulsed gas loads

 pulsed primary beam

3. Efficient

 production of radio isotopes is limited

4. Rapid

 low residence and ionization times

 decay of radio isotopes

5. Chemical selectivity (desired)

 No (or less efficient) ionization of radiogenic 

impurities

VADIS

electron impact ionization

thermionic electron emission

hot cavity ionizer (with RILIS)

surface or resonant laser ionization

graphics by Y. Martinez-Palenzuela

Frequently used ion sources (1+)

LIST ion source:

Hot cavity, repeller, RFQ ion guide



Molecular beams
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Molecular ISOL beams

 Beam purification

 Shift the mass region to a higher mass to avoid 

isobaric contaminants. e.g. 66GeS, 133SnS, 70SeCO

 Beam extraction by In-situ volatilization

 Elements with very low volatility are not released

 Reactive elements can be chemically trapped

e.g. 8BF2, 
15CO

 To study the radioactive molecules 

 Fundamental properties, e.g. 223RaF

Target material

SeCO

https://web.mit.edu/radiomolecules/
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Molecule formation in RFQ structures

• Ion traps for molecular 

formation/dissociation

• Development for gas injection into RFQ for 

in-trap chemistry

• Development of mass spectrometer and 

ToF detection for identification after RFQ

• In-source laser ionization of molecules

M. Fan et al, Optical mass spectrometry of cold RaOH+ and RaOCH3+, PRL 126, 23002 (2021)

A. Ringvall Moberg et al, Time-of-Flight study of molecular beams extracted from the ISOLDE RFQ 

cooler and buncher NIMB 463, 522 (2020)

Mia Au

DREEBIT Wien filter

Offline 2 RFQ
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Volatile carrier molecules

Element not available 

as beam at ISOLDE
G. Herrmann, Ark. Fys. 36, 111 (1967)

 Volatile carriers known for 

all reactive elements

 Many are not compatible 

with high-temperature 

conditions

U. Köster, (Im-)possible ISOL beams,

Eur. Phys. J. Special Topics 150, 285 

(2007)

Volatile carrier compounds
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Do we have to operate at the highest temperatures?

Cold targets? Cold ion sources?

 Nano-sctructured target material (CaO) 

operated at ambient temperature

 fast diffusion in nano-materials and possible release by recoil effect

 Foil target at ambient temperature, thermalizing 

recoils in gas atmosphere

 no diffusion required 

J.P. Ramos et al, NIMB 376, 81 (2016)

J. Ballof et al., preprint, https://arxiv.org/abs/2108.01745

 Cold RF-heated plasma ion sources at ISOLDE:

 COMIC / Helicon

 For delicate molecules: favour breakup over ionization

Ionization chamber of Helicon plasma source 

after operation with Mo(CO)6

 Ion source development required

A. Kronenberg et al, NIMB 266, 19 (2008)



The photo-cathode

electron-impact source

Decoupling electron-emission and temperature



ICIS’21 – A cold electron-impact ion source for radioactive molecular beams22/09/2021 12

Proof-of-principle setup 1: Ta cathode

Laser

Pulse length 265 fs

Power ~ 4.5 W

Wavelength 343 nm

Rep. Rate 50 kHz

Beam diameter ~ 6 mm

Beam spot on 

cathode

1.5 mm

Cathode

Material tantalum

Anode-cathode

gap

1.5 mm
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Proof-of-principle setup 1: Ta cathode

Target assembly Before operation / during assembly

2 mm

Laser-induced craters 

on the cathode surface

during focusing attempts

Ta-cathodeAnode assembly

After operation

Extraction side

Traces from laser-

alignment on the 

extraction side
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Proof-of-principle setup 1: Ta cathode

Fragile carrier compound Mo(CO)6

FBDE: 1.7 eV  

IP :      8.3 eV

Vapour pressure: 

25 Pa (ambient temp.)

Measured efficiencies

Measured mass spectrum
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Proof-of-principle setup 1: Ta cathode

 Results from first operation

 Fragile compound Mo(CO)6 could be ionized in the setup

 Efficiency of Mo(CO)6 is in the same order of magnitude as Kr

 Mechanism of electron production unclear: Photo-electric effect or thermionic emission?

 Efficiency is very likely limited by electron current: 

~ 100 nA instead of ~ 100 mA with a hot VADIS

 Further focusing attempts

 focusing the beam diameter from ~ 6 mm to  below 1.5 mm caused cathode damage
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Proof-of-principle setup 2: Cu cathode

 Setup optimized for photo-electric effect

Laser

Pulse length 50 ns

Power ~ 0.01 W

Wavelength 215 nm

Rep. Rate 10 kHz

Beam diameter ~ 1.5 mm

Cathode

Material copper

Anode-cathode

gap

~ 3 mm



ICIS’21 – A cold electron-impact ion source for radioactive molecular beams22/09/2021 17

Proof-of-principle setup 2: Cu cathode

Target assembly Photo-cathode after operation

2 mm

 Cap made of oxygen free copper foil (OFHC)

 PEEK insulator

 No visible difference before and after operation

 No polishing, nor special cleaning or bake out
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Proof-of-principle setup 2: Cu cathode

 Results from Cu-cathode operation

 Source operated for 6 days (24/7)

 Kr and CO2 can be ionized with a photo-cathode 
electron-impact ion source

 No electron emission with 440 mW of blue light (430 nm) 
confirms photo-electric effect

 Source magnet increased efficiency by factor ~8

 Estimated quantum efficiency: 3 x 10-4

 Decomposition of CO2 degrades the photo-cathode. 

 Estimated decrease of 65% in 66 hours, pressure ca. 
1 x 10-4 mbar

 Typical hot VADIS: 1 x 10-6 mbar (injected gas)

Injected 

gas

Ionization 
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CO2 2 x 10-5
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How to increase the efficiency?

e ∝ ne x s x  fIonization efficiency

L. Penescu et al,  RSI 81, 02A906

electron density

ionization cross 

section

 ion extraction

 electron focusing

 other effects

Parameter
VADIS

Thermionic 

emission

Photo-

cathode 

prototype

Electron current ~ 100 mA ~ 0.1 to 1 µA

Ionization efficiency Kr 30 % 0.004 %

Diameter electron emitter 1.2 cm 0.15 cm

 Increase of electron current required

 First approximation: ionization efficiency 

increases proportionally with electron current
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Next Prototype?

 Proposal for a future prototype: 

perpendicular illumination

 Resolves space charge limitations

 Beam path developed for the PI-LIST ion source

 Efficiency estimate by scaling of space-charge limited 

electron currents

R. Heinke et al,  Hyperfine Interactions 238, (2017)

Parameter Next 

prototype

Tested

prototype

Electron emitter diameter 12 mm 1.5 mm

Anode-cathode distance 3 mm 1.5 mm

Repetition rate 2 MHz 50 kHz

Wavelength 257 nm 343 nm

Power 3.7 W 4.5 W

Mean electron current 90 µA 90 nA

Ionization efficiency Mo(CO)6 1% 0.001%

Estimated parameters to reach 1% ionization 

efficiency:

J. Ballof et al., preprint, https://arxiv.org/abs/2108.01745
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Conclusion

 Electron-impact ion source can be driven by a photo-cathode

 Photo-cathode can cope with typical ISOL conditions and gas-loads (~ 10-6 mbar)

 Ionization efficiency (proof-of-concept experiment) 0.001% for Mo(CO)6

 Upgrading laser-system and source geometry could yield efficiencies of at least 1%

Impact on molecular beams

 Decoupling of electron production from ion source temperature

 First ISOL ion source for delicate molecules

 Could facilitate refractory beam extraction and extract molecules for fundamental physics research



Thank you for 

your attention!
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