A cold electron-impact ion source driven by laser-induced electron emission

New opportunities for radioactive molecular beams?

Jochen Ballof, Mia Au, Katerina Chrysalidis, Christoph Düllmann, Valentine Fedosseev, Eduardo Granados, Reinhard Heinke, David Leimbach, Bruce Marsh, João Pedro Ramos, Annie Ringvall Moberg, Sebastian Rothe, Thierry Stora, Shane Wilkins, Alexander Yakushev

ISOLDE and available beams

(Un)available beams at ISOLDE

- Available beams
 - more than 1000 radioisotopes
 - 74 chemical elements
 - lightest element: Helium
 - heaviest element: Uranium
 - half-lives down to ~ ms
- Unavailable beams
 - Many refractory elements

ISOLDE target and ion source unit

4

Ion sources at ISOLDE

Ion source requirements

- 1. Compact and radiation hard
 - Integrated in the target unit
 - handling by robot required

2. Withstand pulsed gas loads

pulsed primary beam

3. Efficient

production of radio isotopes is limited

4. Rapid

- Iow residence and ionization times
- decay of radio isotopes

5. Chemical selectivity (desired)

 No (or less efficient) ionization of radiogenic impurities

Frequently used ion sources (1+)

VADIS electron impact ionization thermionic electron emission

hot cavity ionizer (with RILIS) surface or resonant laser ionization

LIST ion source:

graphics by Y. Martinez-Palenzuela

Hot cavity, repeller, RFQ ion guide

Molecular beams

Molecular ISOL beams

- Beam purification
 - Shift the mass region to a higher mass to avoid isobaric contaminants. e.g. ⁶⁶GeS, ¹³³SnS, ⁷⁰SeCO
- Beam extraction by *In-situ* volatilization
 - Elements with very low volatility are not released
 - Reactive elements can be chemically trapped
 e.g. ⁸BF₂, ¹⁵CO
- To study the radioactive molecules
 - Fundamental properties, e.g. ²²³RaF

https://web.mit.edu/radiomolecules/

Molecule formation in RFQ structures

- Ion traps for molecular formation/dissociation
 - Development for gas injection into RFQ for in-trap chemistry
 - Development of mass spectrometer and ToF detection for identification after RFQ
- In-source laser ionization of molecules

M. Fan et al, *Optical mass spectrometry of cold RaOH+ and RaOCH3+,* PRL **126**, 23002 **(**2021)

A. Ringvall Moberg et al, *Time-of-Flight study of molecular beams extracted from the ISOLDE RFQ cooler and buncher* NIMB **463**, 522 (2020)

Mia Au

Volatile carrier molecules

- Volatile carriers known for all reactive elements
- Many are not compatible with high-temperature conditions

U. Köster, (Im-)possible ISOL beams, Eur. Phys. J. Special Topics **150**, 285 (2007)

G. Herrmann, Ark. Fys. 36, 111 (1967)

Do we have to operate at the highest temperatures?

Cold targets? Cold ion sources? Nano-sctructured target material (CaO) Cold RF-heated plasma ion sources at ISOLDE: operated at ambient temperature COMIC / Helicon fast diffusion in nano-materials and possible release by recoil effect For delicate molecules: favour breakup over ionization Target nanomaterials at CERN-ISOLDE: synthesis and release data J.P. Ramos ^{a,b,*}, A. Gottberg ^{a,1}, R.S. Augusto ^{a,c}, T.M. Mendonca ^a, K. Riisager ^d, C. Seiffert ^{a,e}, P. Bowen ^b, A.M.R. Senos^f, T. Stora^{a,*} J.P. Ramos et al, NIMB 376, 81 (2016) Foil target at ambient temperature, thermalizing recoils in gas atmosphere

no diffusion required

A concept for the extraction of the most refractory elements at **CERN-ISOLDE** as carbonyl complex ions

J. Ballof^{1,2} ^a, K. Chrysalidis¹, Ch.E. Düllmann^{2,3,4}, V. Fedosseev¹, E. Granados¹, D. Leimbach^{1,5}, B.A. Marsh¹, J.P. Ramos¹ ^b, A. Ringvall-Moberg^{1,7}, S. Rothe¹, T. Stora¹ ^c, S.G. Wilkins^{1,8}, and A. Yakushev^{3,4}

J. Ballof et al., preprint, https://arxiv.org/abs/2108.01745

A. Kronenberg et al, NIMB 266, 19 (2008)

Ionization chamber of Helicon plasma source after operation with $Mo(CO)_6$

Ion source development required

The photo-cathode electron-impact source

Decoupling electron-emission and temperature

Laser			
Pulse length	265 fs		
Power	~ 4.5 W		
Wavelength	343 nm		
Rep. Rate	50 kHz		
Beam diameter	~ 6 mm		
Beam spot on cathode	1.5 mm		

Cathode			
Material	tantalum		
Anode-cathode	1.5 mm		
gap			

Target assembly

Before operation / during assembly

Anode assembly

After operation

Laser-induced craters on the cathode surface during focusing attempts

Ta-cathode

Traces from laseralignment on the extraction side

Extraction side

22/09/2021

Results from first operation

- Fragile compound Mo(CO)₆ could be ionized in the setup
- Efficiency of Mo(CO)6 is in the same order of magnitude as Kr
- Mechanism of electron production unclear: Photo-electric effect or thermionic emission?
- Efficiency is very likely limited by electron current:
 - ~ 100 nA instead of ~ 100 mA with a hot VADIS

Further focusing attempts

focusing the beam diameter from ~ 6 mm to below 1.5 mm caused cathode damage

15

Setup optimized for photo-electric effect

Laser			
Pulse length	50 ns		
Power	~ 0.01 W		
Wavelength	215 nm		
Rep. Rate	10 kHz		
Beam diameter	~ 1.5 mm		

Cathode			
Material	copper		
Anode-cathode	~ 3 mm		
gap			

Target assembly

Photo-cathode after operation

- Cap made of oxygen free copper foil (OFHC)
- PEEK insulator
- No visible difference before and after operation
- No polishing, nor special cleaning or bake out

- Results from Cu-cathode operation
 - Source operated for 6 days (24/7)
 - Kr and CO₂ can be ionized with a photo-cathode electron-impact ion source
 - No electron emission with 440 mW of blue light (430 nm) confirms photo-electric effect
 - Source magnet increased efficiency by factor ~8
 - Estimated quantum efficiency: 3 x 10⁻⁴
 - Decomposition of CO₂ degrades the photo-cathode.
 - Estimated decrease of 65% in 66 hours, pressure ca. 1 x 10⁻⁴ mbar
 - Typical hot VADIS: 1 x 10⁻⁶ mbar (injected gas)

How to increase the efficiency?

- Increase of electron current required
- First approximation: ionization efficiency increases proportionally with electron current

Parameter	VADIS Thermionic emission	Photo- cathode prototype
Electron current	~ 100 mA	~ 0.1 to 1 µA
Ionization efficiency Kr	30 %	0.004 %
Diameter electron emitter	1.2 cm	0.15 cm

Next Prototype?

- Proposal for a future prototype: perpendicular illumination
 - Resolves space charge limitations
 - Beam path developed for the PI-LIST ion source
 R. Heinke *et al*, Hyperfine Interactions 238, (2017)
- Efficiency estimate by scaling of space-charge limited electron currents

Estimated parameters to reach 1% ionization efficiency:

Parameter	Next prototype	Tested prototype
Electron emitter diameter	12 mm	1.5 mm
Anode-cathode distance	3 mm	1.5 mm
Repetition rate	2 MHz	50 kHz
Wavelength	257 nm	343 nm
Power	3.7 W	4.5 W
Mean electron current	90 µA	90 nA
Ionization efficiency Mo(CO) ₆	1%	0.001%

J. Ballof et al., preprint, https://arxiv.org/abs/2108.01745

Conclusion

- Electron-impact ion source can be driven by a photo-cathode
- Photo-cathode can cope with typical ISOL conditions and gas-loads (~ 10⁻⁶ mbar)
- Ionization efficiency (proof-of-concept experiment) 0.001% for Mo(CO)₆
- Upgrading laser-system and source geometry could yield efficiencies of at least 1%

Impact on molecular beams

- Decoupling of electron production from ion source temperature
- First ISOL ion source for delicate molecules
- Could facilitate refractory beam extraction and extract molecules for fundamental physics research

21

Thank you for your attention!

