

### First Operations with Caesium of the Negative Ion Source SPIDER

E. Sartori<sup>1, 2</sup>, M. Agostini<sup>1</sup>, M. Barbisan<sup>1</sup>, M. Bigi<sup>1</sup>, M. Boldrin<sup>1</sup>, M. Brombin<sup>1</sup>, R. Casagrande<sup>1</sup>, S. Dal Bello<sup>1</sup>, M. Dan<sup>1</sup>,
B.P. Duteil<sup>1,3</sup>, M. Fadone<sup>1</sup>, L. Grando<sup>1</sup>, A. Maistrello<sup>1</sup>, M. Pavei<sup>1</sup>, A. Pimazzoni<sup>1</sup>, C. Poggi<sup>1</sup>, A. Rizzolo<sup>1</sup>, A. Shepherd<sup>1,4</sup>, M. Ugoletti<sup>1</sup>,
P. Veltri<sup>5</sup>, B. Zaniol<sup>1</sup>, R. Agnello<sup>1,3</sup>, P. Agostinetti<sup>1</sup>, D. Aprile<sup>1</sup>, V. Candeloro<sup>1</sup>, C. Cavallini<sup>1</sup>, R. Cavazzana<sup>1</sup>, M. Cavenago<sup>6</sup>,
G. Chitarin<sup>1,2</sup>, S. Cristofaro<sup>1</sup>, M. Dalla Palma<sup>1</sup>, R. Delogu<sup>1</sup>, M. DeMuri<sup>1</sup>, S. Denizeau<sup>1</sup>, F. Fellin<sup>1</sup>, A. Ferro<sup>1</sup>, C. Gasparrini<sup>1</sup>, P. Jain<sup>1</sup>,
A. Lucchetta<sup>1</sup>, G. Manduchi<sup>1</sup>, N. Marconato<sup>1</sup>, D. Marcuzzi<sup>1</sup>, I. Mario<sup>1,6</sup>, R. Milazzo<sup>1</sup>, R. Pasqualotto<sup>1</sup>, T. Patton<sup>1</sup>, N. Pilan<sup>1</sup>,
M. Recchia<sup>1</sup>, A. Rigoni-Garola<sup>1</sup>, M. Siragusa<sup>1</sup>, M. Spolaore<sup>1</sup>, C. Taliercio<sup>1</sup>, V. Toigo<sup>1</sup>, R. Zagorski<sup>1,7</sup>, L. Zanotto<sup>1</sup>, M. Zaupa<sup>1</sup>, M. Zuin<sup>1</sup>,

<sup>1)</sup>Consorzio RFX, Corso Stati Uniti 4, I-351, 27 Padova, Italy
 <sup>2)</sup> Department of Management and Engineering, Università degli Studi di Padova, Strad. S. Nicola 3, 36100 Vicenza, Italy
 <sup>3)</sup> Ecole Polytechnique Fédérale de Lausanne (EPFL) - Swiss Plasma Center (SPC), 1015 Lausanne, Switzerland
 <sup>4)</sup>CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon, UK
 <sup>5)</sup>ITER Organization (IO), Route de Vinon sur Verdon, CS 90 046, F-1, 3067 St. Paul-lez-Durance, France
 <sup>6)</sup>Istituto Nazionale Fisica Nucleare, Italy
 <sup>7)</sup> National Centre for Nuclear Research (NCBJ), PL-05-400 Otwock, Poland

慈

### SPIDER full-size prototype source for ITER HNB



Full scale **plasma source** of ITER Heating Neutral Beams; RF plasma source based on IPP design, 2x ELISE

Targets: optimisation of

- Extracted current density (355 A/m<sup>2</sup> H<sup>-</sup>, 285 A/m<sup>2</sup> D<sup>-</sup>)
- Uniformity over 1280 apertures (within 10%)
- Stability (1 h beam)
- Co-extracted electron fraction (<0.5 H<sup>-</sup>, <1 D<sup>-</sup>)

first plasma influence of vessel pressure on RF discharges clarified first extracted beam, masking most extraction apertures source plasma studied with movable probes Improving availability and reliability [1h/day plasma on] HV >30kV available

#### First operation with caesium

shutdown for improvements

201

0

# First Operations with Caesium of the Negative Ion Source SPIDER



- Short-pulse operation (~30s plasma, ~15s beam on) about 1500 blips with Cs
- Investigation of
  - parameters influencing caesiation
  - beam optics [at low RF power]
  - HV-related technical issues

At sufficiently high  $U_{EG}$ , extracted ions and electrons:

HVD

iter

#### Outline



- SPIDER full-size prototype source for ITER HNB
- Effect of caesiation parameters
  - Cs evaporation rate, pulse repetition time, PG temperature
- Main beam features
  - Single beamlet optics at low energy
  - Tuned RF power to compensate non uniformities
  - Stability in deuterium
- Conclusions: performance throughout campaign





- 4 horizontal pairs of RF drivers
- Present limit for reliable beam operation 50 kW/driver
- Pulse **duration limit** due to power on defective passive element (i.e. < 40s @ 50kW/driver)

P. Jain, poster #142: Experimental investigation of RF driver equivalent impedance in the inductively coupled SPIDER ion source

R. Casagrande, Techniques to widen the operational space of SPIDER radio frequency driven plasma source





*I<sub>PG</sub>* creates horizontal filter field (before PG, about 1.6mT/kA)







- *I<sub>PG</sub>* creates horizontal filter field (before PG, about 1.6mT/kA)
- Bias of Plasma Grid (PG)
- Bias of Bias Plate (BP)

(either current- or voltage-controlled)







- *I<sub>PG</sub>* creates horizontal filter field (before PG, about 1.6mT/kA)
- Bias of Plasma Grid (PG)
- Bias of Bias Plate (BP)
- EG power supply: 0-12kV
- AG power supply: limited to about 45 kV
- Nominal ratio  $U_{AG}/U_{EG} = 9.5$







- I<sub>PG</sub> creates horizontal filter field (before PG, about 1.6mT/kA)
  - Bias of Plasma Grid (PG)
  - Bias of Bias Plate (BP)
  - EG power supply: 0-12kV
  - AG power supply: limited to about 45 kV
  - Nominal ratio  $U_{AG}/U_{EG} = 9.5$
  - mask covering most apertures at PG:
    - Limit on vessel pressure (45mPa)
  - Limit on gas load to cryopumps (40 bar L / day)
  - Choice of beamlet



#### Outline



- SPIDER full-size prototype source for ITER HNB
- Effect of caesiation parameters
  - Cs evaporation rate, pulse repetition time, PG temperature
- Main beam features
  - Single beamlet optics at low energy
  - Tuned RF power to compensate non uniformities
  - Stability in deuterium
- Conclusions: performance throughout campaign

#### 1) Caesium injection rate





- 3 Cs ovens installed in vacuum
- characterised in dedicated test stand
- control of Cs evaporation rate
  - repeatability
  - affects source operation
  - affects voltage holding of accelerator

#### 1) Caesium injection rate



ICIS 2021 - E Sartori - First Operations with Caesium of the Negative ion Source SPIDER

#### 2) Repetition rate of plasma pulses



- For given Cs injection rate and source parameters:
  - Longer time between plasma, better performance

iter

- Shorter plasma-on time, better performance
- Equilibrium between *positive* and *negative fluxes* of Cs to converter surface
- During plasma, two possible mechanism (competing)
  - Plasma <u>removes</u> Cs from converter surface
  - Plasma increases Cs transport towards converter and/or reactivate Cs layer
- During vacuum phases, <u>sticking</u> to converter surface of Cs

#### 3) Dependence on plasma grid temperature

- Thermal desorption at converter is a further contribution to balance of Cs at converter
- PG temperature: can be controlled between 35°C and about 150°C
- steady-state extracted and accelerated currents: in general, beam performances decreases above PG temperature of 80°C
- Cs density at extraction region decreases with PG temperature, both in vacuum and plasma phases



iter

### Influence of caesiation parameters in SPIDER, short-pulse op.

- Build-up of Cs layer at converter is a balance of competing processes
- Normalisation: "duty cycle/evap. rate"  $y = \frac{t_{plasma}}{r}$

 $\nu = \frac{t_{plasma}}{t_{rept} \cdot \mathbf{m}'}$ 

- In the plot, saturation values of j<sub>EG</sub> and j<sub>AG</sub> for various plasma duration, pulse repetition time, and caesium injection rate
- PG temperature has large influence, not included in this normalisation

Example:

at 50kW/driver,  $j_{electrons}/j_{H=}=0.35$  at  $\nu = 0.013$ Target: 4 min every 16 min  $\rightarrow$  duty cycle 0.25 Cs evaporation: duty cycle /  $\nu =$ 19 mg/h



#### Outline



- SPIDER full-size prototype source for ITER HNB
- Effect of caesiation parameters
  - Cs evaporation rate, pulse repetition time, PG temperature
- Main beam features
  - Single beamlet optics at low energy
  - Tuned RF power to compensate non uniformities
  - Stability in deuterium
- Conclusions: performance throughout campaign



Emittance scanner

#### Multibeamlet optics at 23 kW/driver: 3 adjacent beamlets



 Either usign IR imaging at CFC tiles or Allison type Emittance scanner

C. Poggi, poster "Phase-space characterization of SPIDER beam using an Allison type emittance scanner", (session 2 tomorrow)

• Emittance scanner intercepts three adjacent beamlets along its vertical run



#### Multibeamlet operation at 23 kW/driver



• **High filter field, high PG bias** improves electron to ion ratio; however vertical uniformity becomes poorer

iter

- **Balancing RF power**, the beam vertical profile can be tuned
- Example: beam optimised for 4kV extraction
- Minima of beamlet divergence rather flat on the underperveant side: nonuniformities on the scale of the beamlet group can be dealt with



#### Multibeamlet operation at 23 kW/driver







- High filter field, high PG bias improves electron to ion ratio; however vertical uniformity becomes poorer
- Balancing RF power, the beam vertical profile can be tuned
- Example: beam optimised for 4kV extraction
- Minima of beamlet divergence rather flat on the underperveant side: nonuniformities on the scale of the beamlet group can be dealt with
- Positive saturation current at PG shows same improvement of vertical uniformity

#### Multibeamlet operation at 50 kW/driver



- Structure within each beam segment is visible (beamlet group dimension, or projection of RF driver)
- Qualitative agreement of IR analysis and visible tomography



M.Ugoletti, poster "Study of SPIDER beam current through visible light measured by beam imaging diagnostic"

M. Agostini, poster " Characterization Of Spider Beam Optics With Visible Cameras "

#### Multibeamlet operation at 50 kW/driver



- Structure within each beam segment is visible (beamlet group dimension, or projection of RF driver)
- Non uniformity depends on extraction voltage:





#### Multibeamlet operation at 50 kW/driver

iter

• For the same source parameters, by improving caesium condition, *j*- see an increase especially at beamlets with lower current, improving the overall uniformity

(in this example, either by reducing PG temperature from 125°C to 80°C or by increasing the Cs evaporation rate, the overall uniformity improves)



#### Beam stability and operation with deuterium

- Only two experimental days dedicated to deuterium
- One example of blip stability at 50 kW/driver is reported for comparison against hydrogen
- Hall sensor measurments correctly indicate the lower perveance in deuterium
- with PG mask, no indications of «overcaesiation» up to 48 mg/h
- Example of BES divergence: (broad component in deuterium)







#### **Conclusions: performance throughout campaign**







- Effect of caesiation parameters explored in the SPIDER giant source
- Extracted negative ion current density in the range of 150-200 A/m<sup>2</sup> at 50 kW/driver in hydrogen, with electron to ion ratio below 0.5
- Beamlet divergence as good as 13 mrad, at beam energy of 45 keV (23 kW/driver with approx 0.32 Pa)

AG power supply current is well below nominal value and it is affected by large noise/signal ratio.



#### SPARE

ICIS 2021 - E Sartori - First Operations with Caesium of the Negative ion Source SPIDER

#### **Beam ion efficiency**

- Phase 1 and 2: good vacuum conditions and caesium effectiveness but insufficient acceleration voltage
  - accelerated current lower than extracted current (ion transmission <1)</li>
- Phase 3: reduction of extracted current by reducing RF power for beamlet optics investigation around perveance match
  - Deterioration of vacuum and caesium effectiveness
- Phase 4: impossibility of raising acceleration voltage above 45kV and of recovering caesium effectiveness of phase 2
  - Investigation of breakdown-related issue by circuitry modifications
  - air leak; temporary recovery after total regeneration
- Phase 5: operation in deuterium
  - commissioning of neutron diagnostics



#### AG current and STRIKE current



iter

# First Operations with Caesium of the Negative Ion Source SPIDER

◆◆◆ ISEG\_I ●●● AGPS\_I\_rp







#### Beam properties vs plasma properties at 23 kW/driver



- All parameters vs PG bias and BP bias
- Determining role of PG bias in j<sub>e</sub> → monotonously decreased with bias current
- Positive ion density at BP decreases with bias current
- Positive ion density and temperature at rear wall increases with biases











