Strangeness in jets and in the underlying event in hadronic collisions at the LHC

Xiaoming Zhang for the ALICE Collaboration Central China Normal University

CERN seminar, 1st June 2021

jet cone

charged

primary

particles

Quark-gluon plasma

Heavy-ion collisions probe the stronglyinteracting matter — the quark-gluon plasma (QGP) under extreme conditions of high temperature and energy density

Hard probes created at initial stage of the collision

QGP tomography

Soft probes created in the "fireball" ➡ Fingerprint of the QGP evolution

2

Collective expansion

Collective properties

Collective expansion — results in complex azimuthal structure of final state particles

Collective properties

Collective expansion — results in complex azimuthal structure of final state particles

Interactions in medium, access to medium properties, e.g. viscosity, equation of state

radial flow

triangular flow $v_3 = \langle cos(3\phi) \rangle$ $= \left\langle \frac{p_x^3 - 3p_x p_y^2}{p_t^3} \right\rangle$

Collective expansion

Collective expansion

→ Push low p_T particles toward intermediate p_T

$$p = p_0 + \beta m$$

*p*₀: initial momentumβ: flow velocity

m: particle mass

[(GeV/*c*)⁻¹] 10 d²N/(dp (1/N_{ev}) 10 10⁻² 10⁻³ 10-10^{-t} 10⁻⁶ 10-10⁻⁸∟ 10⁻¹

ALICE Phys. Rev. C101 (2020) 044907 7

Collective expansion

 \rightarrow Push low p_T particles toward intermediate p_{T}

p₀: initial momentum

m: particle mass

More pronounced in central collisions

ALICE Phys. Rev. C101 (2020) 044907 8

Collective expansion

→ Push low p_T particles toward intermediate p_T

p₀: initial momentum

 β : flow velocity

m: particle mass

More pronounced in central collisions $\langle p_{\gamma} \rangle$ (GeV/*c*)

Collective expansion

→ Push low p_T particles toward intermediate p_T

*p*₀: initial momentumβ: flow velocity

 $\langle p_{\gamma} \rangle$ (GeV/*c*)

m: particle mass

- More pronounced in central collisions
- Mass dependence

- **Fragmentation** hadrons from high p_{T} (hard)
- **Coalescence/recombination** hadron formation via (di-)quark combination in the QGP medium
 - $\Rightarrow p_{T,hadron} \simeq n p_{T,parton}, n = 2 \text{ (meson)}, 3 \text{ (baryon)}$
 - Sensitive to baryon and meson species
 - Baryons from lower momenta partons (denser)

Rapp et al. Phys. Lett. **B655** (2007) 126 Greco et al. Phys.Rev. **C92** (2015) 054904 Ko et al. Phys. Lett. **B792** (2019) 132

- Baryon-to-meson ratio (*N*/K_S⁰) increases at intermediate p_T in central Pb–Pb collisions w.r.t. peripheral ones
 - Interplay of radial flow and coalescence
 - Reflect QGP effects in heavy-ion collisions

high multiplicities

Similar behavior observed also in charm **sector** in small system (pp and p–Pb) collisions

Similar behavior observed also in charm **sector** in small system (pp and p–Pb) collisions

To provide constraints on particle production mechanisms in all collision systems, it is important to separate particles from hard and soft processes

Similar behavior observed also in charm **sector** in small system (pp and p–Pb) collisions

To provide constraints on particle production mechanisms in all collision systems, it is important to separate particles from hard and soft processes

We concentrate on strange hadrons with ALICE in this presentation 22

ALICE at the LHC

Time Projection Chamber (TPC) • $|\eta| < 0.9$ Charged-particle tracking and identification (PID)

Time of Flight (TOF • $|\eta| < 0.9$ • Triggering, pileup rejection, PID

Data samples

- pp at $\sqrt{s} = 7$ and 13 TeV
- p–Pb at $\sqrt{s_{NN}} = 5.02$ TeV
- Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Inner Tracking System (ITS) • $|\eta| < 0.9$, vertexing

V0 (V0A and V0C) • VOA: 2.8 < η < 5.1, VOC: -3.7 < η < -1.7 Triggering and multiplicity determination

Strange particle reconstruction

- $K_{S^0} \rightarrow \pi^+\pi^-$ (BR 69.2%)
- $\Lambda \rightarrow p\pi^{-}$ (BR 63.9%)
- $\Xi^- \rightarrow \Lambda \pi^- \rightarrow p \pi^+ \pi^-$ (BR 63.9%)

Candidate selection

- Pairs/triplets of tracks with proper charge-sign combination
- Particle identification of decay tracks
- Geometrical and kinematic selections based on decay topology

Tag hard processes using jets

(f

- **Charged-particle jet reconstruction**
- Jet finder: anti- k_T , R = 0.4
- $p_{T,track} > 0.15 \text{ GeV/c}, |\eta_{track}| < 0.9$
- $p_{\mathrm{T,jet}}^{\mathrm{ch}}$ > 10, 20 GeV/c, $|\eta_{\mathrm{jet}}|$ < 0.35

Strangeness-jet matching

• Strange particles in jet cone (JC selection)

$$R(S,jet) = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2} < 0.4$$

• Caveat still remaining underlying event (UE) contribution in the JC selection

R(S,jet)-dependent //Ks^o ratio

- Λ/K_{S^0} ratio without UE subtraction
- Lack of enhancement close to the jet axis
- The enhanced N/K_{S^0} ratio is not associated with the jets

Hard processes dominant

Tag hard processes using jets

UE contribution subtraction

- UE contribution is obtained in perpendicular cone (PC selection)
- Density distribution

• Strange particles in jets (JE particles)

$$\frac{\mathrm{d}\rho_{\mathrm{JE}}}{\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}\rho_{\mathrm{JC}}}{\mathrm{d}p_{\mathrm{T}}} - \frac{\mathrm{d}\rho_{\mathrm{UE}}}{\mathrm{d}p_{\mathrm{T}}}$$

- $\mathrm{d}N$
- $dp_{\rm T}$
- UE background is dominant at low p_T
- *p*_T-differential production density in jets (JE particles) is harder than that in UE (PC selection)
- The inclusive density distribution is softer than the UE — jet selection bias

31

Ks⁰ and Λ production — energy dependence

 Results at 7 TeV and 13 TeV are consistent

Weak energy dependence

Ks⁰ and Λ production — system dependence

ALICE arXiv:2105.04890

Weak collision system dependence for particles produced in jets

Production in jets with UE subtraction

MKs⁰ ratio in pp and p-Pb

- In pp collisions: results at 7 TeV are consistent with those at 13 TeV within uncertainties — no (visible) energy dependence
- < 2σ deviation at intermediate p_{T} between pp and p-Pb

MKs⁰ ratio in pp and p-Pb

ALICE arXiv:2105.04890

• Ratio in jets does not show a maximum at intermediate p_{T} , ratio with UE selection is systematically higher than the inclusive in $2 < p_T < 5$ GeV/c

Mks⁰ ratio in pp and p-Pb

- Ratio in jets does not show a maximum at intermediate p_T , ratio with UE selection is systematically higher than the inclusive in $2 < p_T < 5$ GeV/c
- PYTHIA 8 hard QCD is consistent with ratio in jets but does not reproduce the inclusive ratio at low and intermediate p_T

ſ

Mks⁰ ratio in pp and p-Pb

- Ratio in jets does not show a maximum at intermediate p_T , ratio with UE selection is systematically higher than the inclusive in 2 < p_T < 5 GeV/c
- PYTHIA 8 hard QCD is consistent with ratio in jets but does not reproduce the inclusive ratio at low and intermediate p_T

NKs⁰ ratio in Pb–Pb

- Pb–Pb collisions: Λ/K_{S^0} ratio at intermediate p_T is suppressed in jets when compared to inclusive production
- Ratio in jets in Pb–Pb is similar as that in pp and p-Pb

E[±] production in jets and UE

• pp 13 TeV — study extend to the multi-strange sector (Ξ^{\pm}) with higher statistics

E[±]/// ratio in jets

Increase on baryon-to-baryon (Ξ±/Λ) ratio at intermediate-pT suppressed in jets

41

E[±]/// ratio in jets

- Increase on baryon-to-baryon (Ξ±/Λ) ratio at intermediate-p⊤ suppressed in jets
- PYTHIA 8 hard QCD generally reproduces ratio in jets

42

=±// ratio in jets

- Increase on baryon-to-baryon (Ξ^{\pm}/Λ) ratio at intermediate- p_{T} suppressed in jets
- PYTHIA 8 hard QCD generally reproduces ratio in jets
- PYTHIA 8 soft QCD overestimate data — especially at high p_{T}
 - Mechanism reproduces charmed baryon-to-meson ratio can not reproduce the strange baryon-to-baryon ratio in jets

Ω -baryon: PYTHA predictions

Particle ratio — multiplicity dependence

(Multi-)strange hadron to pion yield ratio

- Smooth evolution with charged-particle multiplicity across different collision systems (Pb–Pb, p–Pb and pp)
- No collision energy dependence at the LHC
- Enhancement is stronger with larger strangeness content ($\Omega^{\pm} > \Xi^{\pm} > \Lambda$)

Possible explanation

- Canonical Statistical Model (CSM) [Vovchenko et al. Phys. Rev. **C100** (2019) 054906]
 - Exact conservation of charges in correlation volume
- Core–Corona two-component model [Kanakubo et al. Phys. *Rev.* **C101** (2020) 024912]
 - Evolution from thermal QGP to string fragmentation
- Ropes hadronization [Nayak et al. Phys. Rev. D100 (2019) 074023]
 - Overlapping strings at high energies

45

Two-particle angular correlations

• Explore the multiplicity dependence in pp collisions

Focus on Ξ^{\pm} in events selected by hard scatterings $(p_{T,trigger} > 3 \text{ GeV/c})$

Ks⁰ production in and outside jets

Full

• K_{S⁰} spectra in jets are harder than those produced out of jets

Near-side jet

== production in and outside jets

Full

• Similar as K_S⁰, spectra in jets are

Near-side jet

 $\Delta \eta$

Multiplicity dependence

- Both the full yield and the out-of-jet yield increase with the multiplicity
- Near side jet yield has mild to no-evolution with multiplicity
 - The contribution of out-of-jet production relative to near-side jet production increases with multiplicity

Nultiplicity dependence

• Out-of-jet production is the dominant contribution to $\Xi^{\pm}/K_{S^{0}}$ full yield ratio enhancement in events with a hard scattering ($p_{T,trigger}>3$ GeV/c)

Conclusions

Strange particle production associated to hard processes and the underlying events is studied via two approaches

- Tagged hard processes using reconstructed jets
 - \rightarrow The $\Lambda/K_{\rm S^0}$ increase at intermediate $p_{\rm T}$ is not present within the jets, but is related to the Underlying Event (UE)
 - PYTHIA 8 soft QCD mode gives a strong increase in particle ratios at high p_{T} when multi-strange particles are considered, not consistent with data
- Angular correlations of in-jet and outside-jet production
 - The Ξ^{\pm}/K_{S^0} ratio measured out of jets increases with multiplicity and a hint of increase is observed in the near-side jet
- The inclusive ratio enhancement absent in jets, out-of-jet production is the dominant contribution to strange particle production

Strange particles in jets and UE

 Similar density distributions in jets between pp and p-Pb

dN

 dp_{T}

 No significant modification on jet fragmentation in min bias p–Pb collisions

