Measurement of the W boson mass with the LHCb detector

CERN seminar 29 June 2021

Mika Vesterinen, University of Warwick, on behalf of the LHCb Collaboration

European Research Council

LHCb-PAPER-2021-024 in preparation

Three parameters (g, g', v) in electroweak theory.

Given m_z , α and G_F , the W mass is predictable

Sensitivity to BSM physics is primarily limited by precision of direct measurements of m_W.

Most recent measurement by ATLAS (EPJC 78 (2018) 110) with 19 MeV uncertainty.

LHCb experiment

JINST 3 (2008) S08005

Small angle spectrometer, covering the pseudorapidity region $2 < \eta < 5$, primarily designed for precision study of b- and c-hadrons.

Unique opportunity for wide physics programme at large rapidity (y).

Vector boson production in LHCb and Parton Density Functions

Parton Distributions and QCD at LHCb

R.S. Thorne¹^{*}, A.D. Martin², W.J. Stirling² and G. Watt¹

Department of Physics and Astronomy, University College London, WC1E 6BT, UK
 Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, UK

We consider the impact that can be made on our understanding of parton distributions (PDFs) and QCD from early measurements at the LHCb experiment. The high rapidity values make the experiment uniquely suited to a detailed study of small-x parton distributions and hence will make a significant contribution towards the clarification of both experimental and theoretical uncertainties on PDFs and their applications.

0808.1847 (2008)

Vector boson production in LHCb and Parton Density Functions

Some figures from one of many examples* of LHCb measurements of vector boson production

The LHCb data have been particularly constraining on the valence quark distributions at high-x in recent global PDF fits.

*Full list of LHCb publications in "QCD electroweak and exotica"

The W mass, the LHC and LHCb

Measurements of m_W by CDF and D0 were highlights of the Tevatron programme.

Long-standing concerns about W production being more difficult to model in proton-proton collisions than in proton-antiproton collisions.

A particular concern is the dependence on PDFs, which is related to the detector acceptance.

Prospects for muon p_T based m_W measurement by LHCb

EPJC 75 (2015) 12, 601

Partial *anti*correlation of the PDF uncertainty between LHCb and ATLAS/CMS-like measurements of m_W.

Statistical uncertainty with LHCb's Run-2 (2015-2018) dataset would be better than 10 MeV.

Prospects for muon p_T based m_W measurement by LHCb

EPJC 75 (2015) 12, 601

Partial *anti*correlation of the PDF uncertainty between LHCb and ATLAS/CMS-like measurements of m_W.

Statistical uncertainty with LHCb's Run-2 (2015-2018) dataset would be better than 10 MeV.

An important word of caution from the authors:

5 Uncertainties stemming from the p_T^W modelling

Another source of theoretical uncertainty that we have overlooked so far is the p_T^W model. This strongly affects the preparation of the templates that are used to fit the data and eventually to extract m_W . The presence, at low lepton-pair transverse momenta, of large logarithmically enhanced QCD corrections and the role, in the same kinematic region, of non-perturbative effects have been discussed in Refs. [30,

LHCb's dataset and strategy for mw

Strategic decision to perform a pathfinder measurement of m_W based on the 2016 dataset (1.7 fb⁻¹) and benefit from the ongoing evolution* of the theory tools in the exploitation of the full Run-II dataset (6 fb⁻¹).

The measured m_W value was blinded until the internal review had concluded.

Identified muon candidate matched to single muon trigger path.

Hadronic background suppressed to the percent level by an isolation¹ requirement, which is about 80% efficient for the signal.

Second-muon² veto suppressed $Z \rightarrow \mu \mu$ background by a factor of ~2.

Roughly 2.4 million events remain in the region $28 < p_T < 52$ GeV and $2.2 < \eta < 4.4$ that is used in the m_W fit.

¹Our isolation variable is the p_T sum of all particle-flow objects within a cone of $\Delta R < 0.4$ around the muon. ²With p_T > 20 GeV and 2 < η < 4.5.

The simulation

The complete events and detector interactions are initially simulated with Pythia [1,2] and GEANT [3], respectively.

A variety of models are used to fully reweight the events to/beyond next-to-leading-order accuracy.

Pythia version 8.186 <u>Comput. Phys. Commun. 191 (2015) 159</u>
 LHCb specific tune <u>J. Phys.: Conf. Ser. 331 032047</u>
 The LHCb Simulation Application, Gauss: Design, Evolution and Experience <u>J. Phys.: Conf. Ser. 331 032023</u>

Measurement strategy: fitting the muon q/p_T distribution

The m_W hypothesis is adjusted with event-by-event weights based on a ratio of relativistic Breit-Wigner functions with mass dependent widths.

Challenges for the fit model

Detector response

Muon momentum measurement.

Muon reconstruction and selection efficiency.

Electroweak ($Z \rightarrow \mu \mu / \tau \tau$, $W \rightarrow \tau v$, diboson, top...) and hadronic backgrounds.

W boson production

Modelling of the W p_T distribution is of particular concern.

Also the PDFs, boson polarisation and electroweak corrections.

Simultaneously fitting the W and Z data

Due to the similarity of W and Z production and the role of the Z background in the W sample it is decided to extract m_W in a simultaneous fit of W and Z data (roughly 200k events).

The Z data are binned in

$$\phi^* \equiv \tan\left(\frac{\pi - \Delta\phi}{2}\right) / \cosh\left(\frac{\Delta\eta}{2}\right) \sim \frac{p_{\rm T}}{M}$$

EPJC 71:1600 (2011)

Muon momentum calibration and modelling strategy

- 1. Custom alignment of the tracking system for high p⊤ physics LHCb-FIGURE-2020-009
- 2. Finer analysis-level q/p corrections with the *pseudomass* method EPJC 81 (2021) 3, 251 applied to data and simulation.
- 3. Final *smearing* of the muon momenta in simulation, with parameters determined from a simultaneous fit of Z, J/Ψ , Y(1S) data (and simulation).

Charge-dependent curvature biases

Charge-dependent curvature biases

Our definition of the pseudomass*

$$M^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\mp}}(1-\cos\theta)},$$

EPJC 81 (2021) 3, 251

Charge-dependent curvature biases

Charge-dependent curvature biases

Fit the pseudomass asymmetries (between M⁺ and M⁻ peak positions) in fine detector "regions" (mostly* bins in η and ϕ) and translate these to curvature corrections (shifts in q/p).

Momentum smearing fit

$$\frac{q}{p} \to \frac{q}{p \cdot \mathcal{N}(1 + \alpha, \sigma_{\rm MS})} + \mathcal{N}\left(\delta, \frac{\sigma_{\delta}}{\cosh \eta}\right)$$

Simultaneous fit of Z, Y(1S) and J/ Ψ data (and simulation)

36 fit categories (based on species, magnet polarity, η of the two muons).

Statistical and systematic uncertainties including; variations in the PDG resonance masses, detector material budget, final state radiation and the form of the smearing function.

Selection efficiency modelling

The muon trigger, identification and tracking efficiencies are measured in data and simulation with the same methods.

The simulated events are subsequently corrected with event-byevent weights.

The largest corrections are to the muon trigger efficiency, which is measured using a combination of $Z \rightarrow \mu\mu$ and Y(1S) $\rightarrow \mu\mu$ events in bins of muon η and ϕ .

 p_{T} dependent parameterisations of the trigger efficiency ratios

Selection efficiency modelling

Similar methods for the tracking and muon identification efficiencies.

- Tracking and ID efficiency corrections also apply to the $Z \rightarrow \mu\mu$ background (~6% of the W candidates) that survives the second-muon-veto.
- Uncertainties include:
 - Limited Z and Y(1S) statistics.
 - Variations in the binning, selections and parameterisations.

Modelling the efficiency of the isolation cut

Measured with $Z \rightarrow \mu \mu$ events in bins of η and the projection of the boson p_T onto the muon. LHCb preliminary 0.8 Data hadronic Efficiency 0.6 recoil Uncorrected sim. (ref.) other Corrected simulation 0.4 *W* boson distribution 0.2 0 Ratio to ref. 1.1 0.9 -60 -40 -20 20 40 60 80 100 0 *u* [GeV]

Uncertainty on this part of the model includes the statistics of the Z samples and the dependence of the results on the binning and other method details.

Backgrounds in the $W \rightarrow \mu v$ sample

1) Electroweak backgrounds and heavy flavour hadrons are modelled with the same simulation as used for the signal.

2) Hadronic background

A parametric model for in-flight decays of pions and kaons is trained on a sample of hadrons with weights to account for the variation of the decay-length acceptance on the Lorentz boost.

The p_T shape and the charge asymmetry is fixed but the total fraction is left to float in the m_W fit. Variations in the details of this background model result in a systematic uncertainty of only 2.3 MeV.

Vector boson production model

 k_1 Ф Born-level form of $W \rightarrow \mu \nu$ kinematics: z p_1 p_2 $\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M\mathrm{d}\cos\theta\mathrm{d}\phi} = \frac{3}{16\pi}\frac{\mathrm{d}\sigma^{\mathrm{unpol.}}}{\mathrm{d}p_{\mathrm{T}}^{V}\mathrm{d}y\mathrm{d}M}$ hadron plane 1 $\left\{ (1+\cos^2\theta) + A_0 \frac{1}{2} (1-3\cos^2\theta) + A_1 \sin 2\theta \cos\phi \right\}$ $+A_2\frac{1}{2}\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta$ $+ A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \},\$

Electroweak corrections must also be considered.

 θ and ϕ in the Collins-Soper frame

lepton plane

Choice of PDFs

Measurement based on three recent global PDF sets

- 1. NNPDF31 EPJC 77 (2017) 10, 663
- 2. **CT18** PRD 103 (2021) 1, 014013
- 3. MSHT20 EPJC 81 (2021) 4, 341

We report measurements with full PDF uncertainties based on the three sets individually but the main result is a simple arithmetic average of the three m_W determinations.

These sets supersede the PDF4LHC recommendations <u>J. Phys. G: Nucl. Part. Phys. 43 023001 (2016)</u> but we expect that new recommendations are in the pipeline and these can influence our future analysis of the remaining LHCb data.

The W boson p_T distribution

Complete event generation with parton-showers matched to NLO matrix elements

Cross-section calculation at up to N³LL (logarithmic) accuracy, e.g. DYTurbo*:

Tuning required to compensate for limited perturbative accuracy.

Ultimate perturbative accuracy but debated flexibility to fit the data.

25

p_T [GeV]

30

Tuning and validation with Z p_T data

Varied success with the event generators, but they can still be tuned...

Tuning and validation with $Z p_T$ data

Tuning of α_s and intrinsic k_T

Varied success with the event generators, but they can still be tuned...

Would the resulting predictions of W p_T distribution be reliable?

Avoiding this issue with a W-specific tune

Angular coefficients

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M\mathrm{d}\cos\theta\mathrm{d}\phi} &= \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{\mathrm{unpol.}}}{\mathrm{d}p_{\mathrm{T}}^{V}\mathrm{d}y\mathrm{d}M} \\ &\left\{ (1+\cos^{2}\theta) + A_{0}\frac{1}{2}(1-3\cos^{2}\theta) + A_{1}\sin2\theta\cos\phi \right. \\ &\left. + A_{2}\frac{1}{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta \right. \\ &\left. + A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi \right\}, \end{aligned}$$

Event generators (e.g. POWHEG) have various difficulties.

Choose to use predictions at $O(\alpha_s^2)$ from DYTurbo.

The angular coefficients are essentially [helicity] cross-section *ratios*: do we correlate the scale variations?

Angular coefficients

We follow the preference of <u>JHEP 11 (2017) 003</u>: *uncorrelated* prescription with 31 point scale variation.

As an aside we look forward to discussing with the [NNLOJet] code authors on the possible usage in future measurement of m_{W.} We also thank Rhorry Gauld for sharing the A₃ figure for the LHCb acceptance, which was't in the original publication.

Our special treatment of A₃

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M\mathrm{d}\cos\theta\mathrm{d}\phi} &= \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{\mathrm{U}+\mathrm{L}}}{\mathrm{d}p_{\mathrm{T}}^{V}\mathrm{d}y\mathrm{d}M} \\ &\left\{ (1+\cos^{2}\theta) + A_{0}\frac{1}{2}(1-3\cos^{2}\theta) + A_{1}\sin2\theta\cos\phi \right. \\ &\left. + A_{2}\frac{1}{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta \right. \\ &\left. + A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi \right\}, \end{aligned}$$

The resulting uncertainty on m_W would be around 20-30 MeV.

Dominant sensitivity traced to the A₃ parameter.

Our solution is to float a single A₃ scale factor, which reduces the uncertainty to below 10 MeV.

[Pseudo]data challenges

Can our [POWHEG+Pythia] model adapt itself to pseudo data corresponding to *other* models of the W/Z p_T distributions?

[Pseudo]data challenges

Can our [POWHEG+Pythia] model adapt itself to pseudo data corresponding to *other* models of the W/Z p_T distributions?

Data config.	χ^2_W	χ^2_Z	$\delta m_W \; [{ m MeV}]$		
POWHEGPythia	64.8	34.2	—		
HERWIGNLO	71.9	600.4	1.6		
POWHEGHERWIG	64.0	118.6	2.7		🗹 No more than 10
Pythia 8, CT09MCS	71.0	215.8	-2.4		MeV bias on mw!
Pythia 8, NNPDF31	66.9	156.2	-10.4		•••
DYTurbo	81.5	334.3	-0.8	\mathcal{I}	

Electroweak corrections

Pythia, Photos and Herwig models of QED final state radiation considered.

Central result based on the average of the three, while the uncertainty is based on the envelope over the three individual models.

The reweighting variable where ΔE is the difference in energy between the final-state lepton pair before and after QED FSR.

The effect of additional missing electroweak corrections is assessed by fitting pseudodata from POWHEGew <u>JHEP 04 (2012) 037</u> with and without EW corrections. The difference in m_W is insignificant so the statistical uncertainty of 5 MeV is assigned.

The central fit

Floating parameter	Postfit value
Fraction of $W^+ \to \mu^+ \nu$	0.5293 ± 0.0006
Fraction of $W^- \to \mu^- \nu$	0.3510 ± 0.0005
Fraction of hadron background	0.0151 ± 0.0007
$lpha_s^Z$	0.1243 ± 0.0004
$lpha_s^W$	0.1263 ± 0.0003
$k_T^{ ext{intr}}$	$1.57\pm0.14\text{GeV}$
A_3 scaling	0.979 ± 0.026

$$\chi^2/\text{ndf} = 105/102$$

 $\sigma_{\text{stat}}(m_W) = 23 \text{ MeV}$

(Fit value is still blinded)

PDF uncertainties

The uncertainties are evaluated with specific prescriptions from each of the three groups¹.

At present we choose *not* to constrain the PDF uncertainty using weights or profiling².

Our central m_W result is an average of the three results with the individual PDF sets.

The δm_W are w.r.t central NNPDF3.1 replica

Set	$\delta m_W \; [{ m MeV}\;]$	$\sigma_{\rm PDF, base}$ [MeV]	$\sigma_{\mathrm{PDF}, lpha_s} \; [\mathrm{MeV}\;]$	$\sigma_{\rm PDF} \; [{\rm MeV}\;]$
NNPDF3.1	—	± 8.2	± 2.5	± 8.6
CT18NLO	+11.4	± 11.4	± 1.6	± 11.5
MSHT20	+10.1	± 6.5	± 2.1	± 6.8

¹CT18 uncertainty is rescaled to 68% C.L.

² Encouraging future prospects for LHCb explored in Eur. Phys.J.C 79 (2019) 6

Measurement uncertainty summary

Source	Size	[MeV]
Parton distribution functions	9.0	Average of NNPDF31, CT18, MSHT20
Theory (excl. PDFs) total	17.4	
Transverse momentum model	12.0	Envelope from five different models
Angular coefficients	9.0	"Uncorrelated" 31 point scale variation
QED FSR model	7.2	Envelope of Pythia, Photos and Herwig
Additional electroweak corrections	5.0	Test with POWHEGew)
Experimental total	10.6	
Momentum scale and resolution modelling	7.5	Includes simple statistical contributions
Muon ID, trigger and tracking efficiency	6.0	dependence on external inputs
Isolation efficiency	3.9	and details of the methods
QCD background	2.3	
Statistical	22.7	
Total	31.7	

The [12 MeV] size of the transverse momentum model uncertainty is commensurate with the conclusions of the "data challenge" exercise.

Cross checks

- 1. Orthogonal splits: Five ~50:50 splits of the data (polarity, charge \times polarity, etc...) all result in [mw] differences within 2σ .
- 2. Fit range: The result is stable w.r.t. variations in the upper/lower limits.
- 3. Fit freedom: The result is stable w.r.t. variations in the model freedom (e.g. 3 independent a_s values instead of 2, etc...)
- 4. W-like fit of the Z mass: Measurements with μ^+ and μ^- agree to better than 1σ and their average agrees with the PDG value to better than 1σ .
- δm_w fit: Alternative fit with the difference between the W⁺ and W⁻ masses as another floating parameter: this parameter is consistent with zero within 1σ.
- 6. Additional tests with NNLO PDFs instead of NLO PDFs, variations in the charm quark mass, etc... affect m_W at the \leq 1 MeV level.

7. ...

Unblinding of mw

Unblinding of mw

Prospects for LHC average

A first measurement from CMS is anticipated, while a detailed average of ATLAS, CDF and D0 is underway.

ATLAS+LHCb average under the simplest assumptions:

A detailed ATLAS+LHCb collaborative effort will be required to precisely determine these two correlation coefficients but it seems likely that ρ_{PDF} will be negative <u>1508.06954</u> while the (non-PDF) theory uncertainty will have a positive coefficient. 46

Prospects for LHC average

A first measurement from CMS is anticipated, while a detailed average of ATLAS, CDF and D0 is underway.

ATLAS+LHCb average under the simplest assumptions:

A detailed ATLAS+LHCb collaborative effort will be required to precisely determine these two correlation coefficients but it seems likely that ρ_{PDF} will be negative <u>1508.06954</u> while the (non-PDF) theory uncertainty will have a positive coefficient. 47

Conclusions and outlook

LHCb-PAPER-2021-024 in preparation

First measurement of m_w from LHCb with 32 MeV uncertainty is consistent with previous measurements and with the prediction.

A total uncertainty of \approx 20 MeV looks achievable with existing LHCb data.

EPJC 79 (2019) 6 encourages us to upgrade to a double-differential fit.

We look forward to working with the other LHC experiments, and the theory community, to fully exploit LHCb's unique/complementary rapidity coverage to achieve the ultimate precision on m_W .

Backup slides

Custom alignment for high p_T analyses

LHCb's successful real-time alignment and calibration was commissioned in Run-2 JINST 14 (2019) P04013

For the very high (up to ~1 TeV) momentum muons in EW processes the resolution could be improved with a custom alignment including mass-constrained Z candidates.

Recent study on a_s 2106.10289

[Submitted on 18 Jun 2021]

An investigation of the α_S and heavy quark mass dependence in the MSHT20 global PDF analysis

T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne

We investigate the MSHT20 global PDF sets, demonstrating the effects of varying the strong coupling $\alpha_S(M_Z^2)$ and the masses of the charm and bottom quarks. We determine the preferred value, and accompanying uncertainties, when we allow $\alpha_S(M_Z^2)$ to be a free parameter in the MSHT20 global analyses of deep-inelastic and related hard scattering data, at both NLO and NNLO in QCD perturbation theory. We also study the constraints on $\alpha_S(M_Z^2)$ which come from the individual data sets in the global fit by repeating the NNLO and NLO global analyses at various fixed values of $\alpha_S(M_Z^2)$, spanning the range $\alpha_S(M_Z^2) = 0.108$ to 0.130 in units of 0.001. We make all resulting PDFs sets available. We find that the best fit values are $\alpha_S(M_Z^2) = 0.1203 \pm 0.0015$ and 0.1174 ± 0.0013 at NLO and NNLO respectively. We investigate the relationship between the variations in $\alpha_S(M_Z^2)$ and the uncertainties on the PDFs, and illustrate this by calculating the cross sections for key processes at the LHC. We also perform fits where we allow the heavy quark masses m_c and m_b to vary away from their default values and make PDF sets available in steps of $\Delta m_c = 0.05$ GeV and $\Delta m_b = 0.25$ GeV, using the pole mass definition of the quark masses. As for varying $\alpha_S(M_Z^2)$ values, we present the variation in the PDFs and in the predictions. We examine the comparison to data, particularly the HERA data on charm and bottom cross sections and note that our default values are very largely compatible with best fits to data. We provide PDF sets with 3 and 4 active quark flavours, as well as the standard value of 5 flavours.

Possible scenarios for the ATLAS-LHC correlations

Figure 17: A breakdown of the different components of the uncertainties on the measurements of m_W at ATLAS and LHCb where additionally the combination is shown for scenarios where different assumptions of the correlation between the uncertainties due to the theoretical modelling and parton distribution functions. The weight of LHCb in the combination is indicated by $w_{\rm LHCb}$ and the correlation in uncertainties due to parton distribution functions is assumed to be -0.50 in the optimistic and central scenarios, and 0.00 in the conservative scenario, while the correlation on the uncertainty due to theoretical modelling is assumed to be 0.00, 0.33 and 1.00 in the optimistic, central, and conservative scenarios respectively.

Details on the ATLAS uncertainties

$m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$

W-boson charge	W	7+	W	7-	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower μ_F with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Table 3: Systematic uncertainties in the m_W measurement due to QCD modelling, for the different kinematic distributions and W-boson charges. Except for the case of PDFs, the same uncertainties apply to W^+ and W^- . The fixed-order PDF uncertainty given for the separate W^+ and W^- final states corresponds to the quadrature sum of the CT10nnlo uncertainty variations; the charge-combined uncertainty also contains a 3.8 MeV contribution from comparing CT10nnlo to CT14 and MMHT2014.

Momentum smearing fit parameter values

$$\frac{q}{p} \rightarrow \frac{q}{p \cdot \mathcal{N}(1 + \alpha, \sigma_{\rm MS})} + \mathcal{N}\left(\delta, \frac{\sigma_{\delta}}{\cosh \eta}\right)$$

Parameter	Postfit value
$\alpha \ (\eta < 2.2)$	$(0.58 \pm 0.10) imes 10^{-3}$
$\alpha \ (2.2 < \eta < 4.4)$	$(-0.0054 \pm 0.0025) imes 10^{-3}$
δ	$(-0.48 \pm 0.37) \times 10^{-6} \text{ GeV}^{-1}$
$\sigma_{\delta} \ (\eta < 2.2)$	(17.7 ± 1.2) keV $^{-1}$
$\sigma_{\delta} \ (2.2 < \eta < 4.4)$	(14.9 ± 0.9) keV $^{-1}$
$\sigma_{ m MS}$	$(2.015 \pm 0.019) \times 10^{-3}$

Our tunes to the Z p_T data

Program	χ^2/ndf	$lpha_s$	$k_T^{\text{intr}} \; [\text{GeV} \;]$
DYTurbo	79.5/13	0.11800	2.330 ± 0.028
POWHEGPythia	30.3/12	0.12476 ± 0.00043	1.470 ± 0.130
POWHEGHERWIG	55.6/12	0.13613 ± 0.00007	0.802 ± 0.053
HERWIGNLO	41.8/12	0.13520 ± 0.00019	0.753 ± 0.052
Pythia 8, CT09MCS	69.0/12	0.12870 ± 0.00044	2.113 ± 0.032
Pythia 8, NNPDF31	62.1/12	0.12893 ± 0.00044	2.109 ± 0.032

Data challenge exercise

Data config.	χ^2_W	χ^2_Z	$\delta m_W \; [{ m MeV}]$	α_s^Z	$lpha_s^W$	f_{A_3}
POWHEGPythia	64.8	34.2	—	0.1246 ± 0.0002	0.1245 ± 0.0003	0.979 ± 0.029
HERWIGNLO	71.9	600.4	1.6	0.1206 ± 0.0002	0.1218 ± 0.0003	1.001 ± 0.029
POWHEGHERWIG	64.0	118.6	2.7	0.1206 ± 0.0002	0.1226 ± 0.0003	0.991 ± 0.029
Pythia 8, CT09MCS	71.0	215.8	-2.4	0.1239 ± 0.0002	0.1243 ± 0.0003	0.983 ± 0.029
Pythia 8, NNPDF31	66.9	156.2	-10.4	0.1225 ± 0.0002	0.1223 ± 0.0003	0.967 ± 0.029
DYTURBO	81.5	334.3	-0.8	0.1260 ± 0.0001	0.1276 ± 0.0003	0.968 ± 0.029

Consistency between orthogonal subsets of data

$\chi^2_{ m tot}/{ m ndf}$	$\delta m_W [\text{MeV}]$
92.2/102	_
97.2/102	$+57.8 \pm 45.4$
115.5/102	_
85.4/102	-56.6 ± 45.5
97.7/102	_
95.7/102	$+15.1 \pm 45.4$
98.8/102	_
114.6/102	$+65.5 \pm 45.5$
91.7/102	_
102.5/102	100.1 ± 45.3
	χ^2_{tot}/ndf 92.2/102 97.2/102 115.5/102 85.4/102 97.7/102 95.7/102 98.8/102 114.6/102 91.7/102 102.5/102

Varying the freedom of the fit model

Configuration change	$\chi^2_{ m tot}/{ m ndf}$	$\delta m_W \; [{ m MeV}]$	$\sigma(m_W) \; [{ m MeV}]$
$2 \rightarrow 3$ floating α_s params	103.3/101	4.9	\pm 23.1
$2 \rightarrow 1$ floating α_s param	128.2/103	-39.0	\pm 21.1
$2 \rightarrow 1 \alpha_s$ and $1 \rightarrow 2 k_T^{\text{intr}}$ params	116.0/102	-14.5	\pm 22.4
$1 \rightarrow 2$ floating k_T^{intr} params	103.6/101	-1.3	\pm 22.7
$1 \rightarrow 3$ floating k_T^{intr} params	102.6/100	2.0	\pm 22.9
Fixed $fA_3 = 1$	105.3/103	-4.1	\pm 22.2
Floating QCBGD background asymmetry	103.7/101	0.2	\pm 22.7

Stability w.r.t. varying the [q/p_T] fit range

Change to fit range	$\chi^2_{ m tot}/{ m ndf}$	$\delta m_W \; [{ m MeV}]$	$\sigma(m_W) \; [{ m MeV}]$
$p_{\rm T}^{\rm min} = 24 { m GeV}$	94.4/122	-2.0	19.7
$p_{\mathrm{T}}^{\mathrm{min}}=26~\mathrm{GeV}$	95.9/102	-7.8	20.9
$p_{\mathrm{T}}^{\mathrm{min}}=30~\mathrm{GeV}$	102.7/102	0.3	25.7
$p_{\mathrm{T}}^{\mathrm{min}} = 32 \mathrm{GeV}$	85.0/102	18.6	30.8
$p_{\mathrm{T}}^{\mathrm{max}} = 48 \mathrm{GeV}$	105.0/102	3.2	23.2
$p_{\mathrm{T}}^{\mathrm{max}} = 50 \mathrm{GeV}$	102.6/102	2.0	23.0
$p_{\rm T}^{\rm max} = 54~{ m GeV}$	96.0/102	8.3	22.6
$p_{\rm T}^{\rm max} = 56~{ m GeV}$	103.4/102	13.9	22.4

Example postfit projections

Parametric correction at high boson p_T

Also applied to the model of W production but with 100% uncertainty $= > \sim 1$ MeV on m_W.