

Jianhui Zhu (GSI&CCNU) for the ALICE Collaboration

Charm production and hadronisation at the LHC with ALICE

CENTRAL CHINA NORMAL UNIVERSITY

Heavy-flavour production in pp collisions

Hadroproduction described by factorisation approach, which works well for charm and beauty mesons :

 $\frac{\mathrm{d}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{D}}}(p_{\mathrm{T}};\mu_{\mathrm{F}};\mu_{\mathrm{R}}) = PDF(x_{\mathrm{a}},\mu_{\mathrm{F}})PDF(x_{\mathrm{b}},\mu_{\mathrm{F}}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c}}}(x_{\mathrm{a}},x_{\mathrm{b}},\mu_{\mathrm{R}},\mu_{\mathrm{F}}) \otimes D_{\mathrm{c}\to\mathrm{D}}(z=p_{\mathrm{D}}/p_{\mathrm{c}},\mu_{\mathrm{F}})$

parton distribution function (PDF) (non-perturbative)

hadronisation by fragmentation partonic cross section (non-perturbative) (perturbative)

Current pQCD calculations based on factorisation approach use fragmentation functions tuned on e^+e^- and ep measurements, assuming them universal across different collision energies and systems

CERN-LHC Seminar

Is charm fragmentation universal at the LHC?

Investigate the charm baryon-to-meson & baryon-to-baryon yield ratio, which are sensitive to hadronisation mechanism

Charm fragmentation measured in e^+e^- and ep

- Charm fragmentation fractions (FF) $f(c \rightarrow H_c) = \sigma(H_c)/\sigma(c) = \sigma(H_c)/\sum \sigma(H_c)$ (w.d.: weakly decaying)
 - Inputs used in a standard factorisation approach
- Production cross section of $\Xi_c^{0,+}$ are calculated under assumptions^[1]: $f(c \to \Xi_c^0) / f(c \to \Lambda_c^+) = f(s \to \Xi^-) / f(s \to \Lambda) \approx 0.004$

Average LEP FF	H_c	$f(c \rightarrow H_c)$
	D^0	54.2 ± 2.4
	D^+	22.5 ± 1.0
	D_s^+	9.2 ± 0.8
	Λ_c^+	5.7 ± 0.6
	D^{*+} , rate	23.4 ± 0.7
	D^{*+} , double-tag	24.4 ± 1.3
L. Gladilin, EPJC 75 (2015) 19	D^{*+} , combined	23.6 ± 0.6

Sum of $f(c \rightarrow H_c)$ for D⁰, D⁺, D⁺_s and $\Lambda_c^+: 91.6 \pm 3.3$ (stat \oplus syst) ± 1.0 (BR) %

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

[1] M. Lisovyi, et al., EPJC 76 (2016) no.7, 397 [2] B factories: EPJC 76 no. 7, (2016) 397 [3] LEP: EPJC 75 no. 1, (2015) 19 [4] HERA: EPJC 76 no. 7, (2016) 397

Factorisation: a very successful framework

- vs. $p_{\rm T}$ and y (wide range)
- in different collision energies
- relative abundance of charm meson species

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Described by pQCD calculations relying on factorisation

Universality confirmed at the LHC in 2013

M. Lisovyi, A. Verbytskyi, O. Zenaiev, EPJC 76 (2016) no.7, 397

CERN-LHC Seminar

Very nice agreement across collision systems (e^+e^- , ep and pp)

In 2013, only LHCb Λ_c^+ measurement at forward rapidity in pp@7 TeV^[1] available at the LHC

[1] LHCb: Nucl.Phys.B 871 (2013) 1-20

Role of hadronisation began to change in 2017

https://cerncourier.com/a/alice-investigates-charm-quark-hadronisation

Reporting on international high-energy physics CERNCOURIER

Physics 🗸	Technology -	Community -	In focus	Magazine	
-----------	-------------------------	------------------------	----------	----------	--

f

 \square

₽

STRONG INTERACTIONS | NEWS

ALICE investigates charm-quark hadronisation

16 February 2018

(Left) The Λ^+_c/D^0 baryon-to-meson ratio measured in pp and p-Pb collisions as a function of transverse momentum, compared with different event generators for pp collisions. (Right) The ratio of the p_T differential cross-sections of Ξ^{0}_{c} baryons (multiplied by the branching ratio into e⁺ $v_e \Xi^-$) as a function of transverse momentum, showing the large uncertainty on the $\Xi^0_c \rightarrow e^+ v_e \Xi^$ branching ratio (shaded bands).

CERN-LHC Seminar

Measurements of $\Lambda_c^+/D^{0[1]}$ and $\Xi_c^0/D^{0[2]}$ from ALICE in 2017 much higher than calculations based on fragmentation fractions tuned on e⁺e⁻ data

- Indicate fragmentation of charm quark NOT well understood
- Charm baryon studies suggested that charm hadronisation might not be universal and depends on collision system

[1] ALICE: JHEP 04 (2018) 108 [2] ALICE: PLB 781 (2018) 8-19

A Large Ion Collider Experiment (ALICE)

System	Year(s)	√s _{NN} (TeV)	L _{int} (MB)	00
	2017	5.02	~19 nb ⁻¹	
рр	2016-2018	18 13 ~33 nb ⁻¹		
p–Pb	2016	5.02	~0.3 nb ⁻¹	
Pb–Pb (0-10%)	2010	F 0.2	~0.13 nb ⁻¹	
Pb–Pb (30-50%)	2010	- 3.0Z	~0.056 nb ⁻¹	THE ALICE

Time Projection Chamber (TPC)

- $|\eta| < 0.9$
- Tracking, PID

Time-Of-Flight (TOF)

- $|\eta| < 0.9$
- Tracking, PID

CERN-LHC Seminar

(18)

1. ITS

3. TPC

4. TRD

5. TOF

8 Deal

7.

6. HMPID

EMCal

9. PHOS, CPV

10. L3 Magnet 11. Absorber

13. Muon Wall

16, PMD

19. ACORDE

17. AD 18. ZDC

(17)

nner Tracking System (ITS)

| *η* | < 0.9

Tracking, vertex, particle identification (PID), multiplicity

Charm production and hadronisation at the LHC with ALICE

Charm-hadron reconstruction

- Particle identification of decay tracks
- Selections on the displaced decay topology
- Machine-learning (ML) techniques used

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

arXiv:2106.08278

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm	mesons			Charm baryons				
	D ⁰ (uc)	D+ (dc)	D*+ (dc)	D_{s}^{+} (sc)	Λ_{c}^{+} (udc)	Σ_{c}^{0} (ddc)	Σ_{c}^{++} (uuc)	Ξ _c + (usc)	Ξ _c ⁰ (dsc)	$\Omega_{ m c}^{0}$ (ssc)
Strangeness	0 1		1	0			1	2		
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8	_	151.2	60.7		_	136.6	45.8	80

$$D^{0} \rightarrow K^{-}\pi^{+} (BR=3.95\%)$$

$$D^{+} \rightarrow K^{-}\pi^{+}\pi^{+} (BR=9.38\%)$$

$$D^{*+} \rightarrow D^{0}\pi^{+} (BR=67.7\%)$$

$$D^{+}_{s} \rightarrow \phi\pi^{+} \rightarrow K^{+}K^{-}\pi^{+} (BR=2.24\%)$$

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Baseline measurements: D mesons

 D^0 and D^+ measured down to $p_T = 0$, D_s^+ measured down to $p_T = 1 \text{ GeV}/c$

pQCD calculations at NLO with FFs from e^+e^- in good agreement with prompt and non-prompt D mesons

- FONLL (Fixed Order + Next-to-Leading Logarithms)^[1]
- **GM-VFNS** (General Mass Variable Flavour Number Scheme

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

[1] M. Cacciari, et al., JHEP 10 (2012) 137 [2] B. Kniehl, et al., EPJC 72 (2012) 2082 [3] PYTHIA8: P. Skands, et al., EPJC 74 (2014) 3024

Charm vs. beauty FF at the LHC: $D_{c}^{+}/(D^{0} + D^{+})$

No significant dependence on collision system and energy

Charm-quark $f_s/(f_u + f_d)$:

- JHEP 05 (2021) 220
- Consistent with PYTHIA8 Monash tune^[1] within 2.7σ
- [1] PYTHIA8: EPJC 74 3024 (2014) [2] LEP: EPJC 75 19 (2015) [3] H1: EPJC 38 447-459 (2005)

CERN-LHC Seminar

[4] ZEUS: JHEP 09 058 (2013) [5] ATLAS: Nucl. Phys. B 907 717-763 (2016) [6] ALICE pp@7TeV: PLB 718 279-294 (2012)

Charm production and hadronisation at the LHC with ALICE

Ratio of fragmentation fraction to meson w/ and w/o strange quark similar for charm and beauty sector

Beauty-quark $f_s/(f_u + f_d)$:

JHEP 05 (2021) 220

Compatible with previous observations and PYTHIA8^[1]

[7] LEP: EPJC 81 (2021) 3, 226 [8] CDF: PRD 77 072003 (2008) [9] ATLAS: PRL 115 262001 (2015)

[10] LHCb pp@7TeV: PRD 85 032008 (2012) [11] LHCb pp@13TeV: PRD 100 031102 (2019)

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm mesons				Charm baryons					
	D ⁰ (uc)	D ⁺ (dc)	D*+ (dc)	D_{s}^{+} (sc)	Λ_{c}^{+} (udc)	Σ_{c}^{0} (ddc)	Σ_{c}^{++} (uuc)	Ξ_{c}^{+} (usc)	Ξ _c ⁰ (dsc)	${\Omega_{c}}^{0}$ (ssc)	
Strangeness	0		1	0			1	2			
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20	
Lifetime (µm)	122.9	311.8	_	151.2	60.7	_	_	136.6	45.8	80	

$$\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$$
 (BR=6.28%)
 $\Lambda_{c}^{+} \rightarrow pK_{s}^{0}$ (BR=1.59%)

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Precise measurements of Λ_c^+ in pp and p–Pb collisions

- First measurements of Λ_c^+ down to $p_T = 0$ in p-Pb collisions
- pQCD calculations underestimate data, especially at low $p_{\rm T}$
 - Previous results in pp@7 TeV confirmed with larger statistics and extended $p_{\rm T}$ range
 - FF used by GM-VFNS includes new input from Belle measurements^[1]

CERN-LHC Seminar

[1] Belle: Phys. Rev. D 97, 072005

Charm production and hadronisation at the LHC with ALICE

Precise measurements of Λ_c^+/D^0

More precise and wider $p_{\rm T}$ range measurements (w.r.t. Run 1) highlight strong $p_{\rm T}$ dependence (CMS reaches higher $p_{\rm T}$)

- Low $p_{\rm T}$ significantly higher than e^+e^- and ep
- High $p_{\rm T}$ approaches value measured in e⁺e⁻ and ep

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Precise measurements of Λ_c^+/D^0

More precise and wider $p_{\rm T}$ range measurements (w.r.t. Run 1) highlight strong $p_{\rm T}$ dependence (CMS reaches higher $p_{\rm T}$)

- Low $p_{\rm T}$ significantly higher than e^+e^- and ep
- High $p_{\rm T}$ approaches value measured in e⁺e⁻ and ep

Comparison with forward and backward rapidity measured by LHCb represents interesting trend

All measurements from Run 2 at the LHC agree to draw conclusion that Λ_c^+/D^0 is higher in pp w.r.t. e^+e^- and ep Charm production and hadronisation at the LHC with ALICE **CERN-LHC Seminar**

Precise measurements of Λ_c^+/D^0

LHC Run 2 data confirm the indications observed previously • Enhancement of $\Lambda_c^+/D^0 \rightarrow \text{modification of charm hadronisation mechanism}$

More precise and wider $p_{\rm T}$ range measurements (w.r.t. Run 1) highlight strong $p_{\rm T}$ dependence (CMS reaches higher $p_{\rm T}$)

- Low $p_{\rm T}$ significantly higher than e⁺e⁻ and ep
- High $p_{\rm T}$ approaches value measured in e⁺e⁻ and ep

 $p_{T}(\text{GeV}/c)$

Comparison with forward and backward rapidity measured by LHCb represents interesting trend

All measurements from Run 2 at the LHC agree to draw conclusion that Λ_c^+/D^0 is higher in pp w.r.t. e^+e^- and ep Charm production and hadronisation at the LHC with ALICE **CERN-LHC Seminar**

 p_{\perp} (GeV/C)

How do model calculations and MC generators perform at the LHC ?

Xiv:2011.06079 :2011.06078

CERN-LHC Seminar

The MC generators

- **PYTHIA8 Monash tune**^[1] simple LUND string fragmentation
- ▶ HERWIG7^[2]: hadronisation implemented via clusters
- **POWHEG**^[3]: matched to PYTHIA6^[4] to generate parton shower
- GM-VFNS^[5]: pQCD calculations, compute the ratios of Λ_c^+ and D^0 cross sections with same choice of pQCD scales
- All implement fragmentation processes tuned on e⁺e⁻ $\Lambda_c^+/D^0 \approx 0.1$
 - NO $p_{\rm T}$ dependence
- At low $p_{\rm T}$, significantly underestimate $\Lambda_{\rm c}^+/{\rm D}^0$
- At high $p_{\rm T}$, discrepancy reduced
- 1] PYTHIA8 Monash: P. Skands, et al., EPJC 74 (2014) 3024
- 🚬 [2] HERWIG: M. Bahr, et al., EPJC 58 (2008) 639-707
- [3] POWHEG: S. Frixione, et al., JHEP 09 (2007) 126
- [4] PYTHIA6: T. Sjostrand, JHEP 05 (2006) 026
- [5] GM-VFNS: B. Kniehl, et al., PRD 101 (2020) 114021

PYTHIA with new colour reconnection

PYTHIA8^[1,2]

- New CR model: colour reconnection beyond leading colour (CR-BLC) mode with SU(3) topology weights + string-length minimisation
 - The junction topology favours baryon formation
 - Primordial Λ_c^+ enhanced by factor ~2 with new CR model
 - Extra contribution from feed-down of Σ_c states (x20~30 more)

MPI-based CR (Old CR model)

Partons created in different scatterings do not interact

CR allowed between partons from different MPIs to minimize string length As implemented in Monash

[1] P. Skands, S. Carrazza and J. Rojo, EPJC 74 (2014) 3024 [2] J. Christiansen, P. Skands, JHEP 08 (2015) 003

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

			,	
Particle	New CR	Old CR		
	string	junction	all	$N_{\rm par}/N_{\rm ev}$
D^+	$5.3 \cdot 10^{-2}$	0	$5.3 \cdot 10^{-2}$	$6.5 \cdot 1$
Λ_c^+	$4.0 \cdot 10^{-3}$	$7.9\cdot10^{-3}$	$1.2 \cdot 10^{-2}$	$6.6 \cdot 1$
Σ_c^{++}	$2.7 \cdot 10^{-4}$	$1.3\cdot 10^{-2}$	$1.3\cdot 10^{-2}$	$5.4 \cdot 1$
Σ_c^+	$2.5 \cdot 10^{-4}$	$1.5\cdot 10^{-2}$	$1.5\cdot 10^{-2}$	$5.2 \cdot 1$
Σ_c^{0}	$2.5 \cdot 10^{-4}$	$1.3\cdot10^{-2}$	$1.3\cdot 10^{-2}$	$5.1 \cdot 1$

More-QCD CR (New CR-BLC model)

- Uses a simple model of the colour rules of QCD to determine the formation of strings and introduce junctions
- * Minimization of the string length over all possible configurations
- * Include CR with MPIs and with beam remnants

Statistical hadronisation with augmented resonances

Statistical Hadronisation Model (SHM) (M. He and R. Rapp)^[1]

- SHM (M. He and R. Rapp), and FF from e^+e^-
 - Tuned on D^0 ALICE data + scaling for mass
- Feed-down from augmented set of charm-baryon states based on Relativistic Quark Model (RQM)^[2]
 - RQM: extra 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c w.r.t. PDG2018^[3]

. He and R. Rapp, PLB 795 (2019) 117-121

r_i	D^+/D^0	D^{*+}/D^0	D_s^+/D^0	Λ
PDG(170)	0.4391	0.4315	0.2736	(
PDG(160)	0.4450	0.4229	0.2624	(
RQM(170)	0.4391	0.4315	0.2726	(
RQM(160)	0.4450	0.4229	0.2624	(

M. He and R. Rapp, PLB 795 (2019) 117-121

$n_i \ (\cdot 10^{-4} \ {\rm fm}^{-3})$	D^0	D^+	D^{*+}	D_s^+	Λ_c^+	$\Xi_c^{+,0}$	
PDG(170)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	(
PDG(160)	0.4996	0.2223	0.2113	0.1311	0.1201	0.0304	(
RQM(170)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	(
RQM(160)	0.4996	0.2223	0.2113	0.1311	0.2203	0.0391	

Coalescence from a partonic system

Catania^[1,2]

- Transport model with hadronization via coalescence+fragmentation
 - Assume a partonic system (QGP-like) in pp
 - Coalescence enhances baryon-to-meson yield ratio
- Charm quark spectrum from FONLL
- Same excited resonances as PDG
- At $p_{\rm T} \approx 0$, a charm quark can hadronize only by coalescence
- At high $p_{\rm T}$, fragmentation becomes dominant

QCM: Quark (re-)Combination Mechanism^[3]

- Charm combined with equal-velocity light quarks
 - Charm can pick up a co-moving light antiquark or two co-moving quarks
- A new scenario of low $p_{\rm T}$ charm quark hadronization in presence of underlying light quark source
 - Maybe related to creation of deconfined parton system in pp at LHC

📄 [1] V. Minissale, S. Plumari, V. Greco, arXiv:2012.12001 [2] S. Plumari, et al., EPJC (2018) 78:348 [3] J. Song, H. Li, F. Shao, EPJC (2018) 78: 344

_ 0 **0 0 0 0 0** 0

CERN-LHC Seminar

Models with different assumptions compared with data

PYTHIA8 CR-BLC tunes^[2] largely enhance Λ_c^+ yield w.r.t. Monash tune^[1]

CERN-LHC Seminar

Models with different assumptions compared with data

- PYTHIA8 CR-BLC tunes^[2] largely enhance Λ_c^+ yield w.r.t. Monash tune^[1]
- NO large differences between different CR-BLC tunes in PYTHIA8
- SHM^[3]+RQM^[4] enhance Λ_c^+ yield w.r.t. SHM+PDG and better describe data

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

[1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] M. He and R. Rapp, PLB 795 (2019) 117-121 [4] D. Ebert, et al., PRD 84:014025, 2011 [5] V. Minissale, et al., arXiv:2012.12001

Catania^[5] further enhances Λ_c^+ yield by coalescence approach, but tend to overestimate the measurement

Compare different collision energies

arXiv:2106.08278

ALI-DER-493896

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Λ_c^+/D^0 in pp@5 TeV and pp@13 TeV NO collision energy dependence

Compare with light flavor (LF)

- Comparison of baryon-to-meson yield ratio in heavy and light sector show similar properties
 - Λ_c^+/D^0 consistent with Λ/K_s^0 both in magnitude and shape
 - Similar $p_{\rm T}$ trend observed for p/ π

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Hadronisation mechanisms similar for light and heavy quarks?

More differential measurements of Λ_c^+/D^0

- $p_{\rm T}$ -dependent enhancement of $\Lambda_{\rm c}^+/{
 m D}^0$ observed from low to high multiplicity
- PYTHIA8 Mode2: Multiplicity trend qualitatively in line with data
- PYTHIA8 Monash: NO variation with multiplicity

CERN-LHC Seminar

More differential measurements of Λ_c^+/D^0

- $p_{\rm T}$ -dependent enhancement of $\Lambda_{\rm c}^+/{\rm D}^0$ observed from low to high multiplicity
- PYTHIA8 Mode2: Multiplicity trend qualitatively in line with data
- PYTHIA8 Monash: NO variation with multiplicity

CERN-LHC Seminar

- Similar $p_{\rm T}$ -dependent enhancement of $\Lambda_{\rm c}^+/{
 m D}^0$ and Λ/K_s^0 observed from low to high multiplicity
 - Hadronisation mechanisms similar for light and heavy quarks?

Heavier charm baryons: $\Sigma_c^{0,+,++}$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm mesons				Charm baryons				
	D ⁰ (uc)	D+ (dc)	D*+ (dc)	D_{s}^{+} (sc)	Λ_{c}^{+} (udc)	Σ_{c}^{0} (ddc)	${\Sigma_{c}}^{++}$ (uuc)	Ξ_{c}^{+} (usc)	Ξ _c ⁰ (dsc)	${\Omega_{ m c}}^0$ (ssc)
Strangeness		0		1		0		1		2
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8	_	151.2	60.7	_		136.6	45.8	80

 $\Sigma_c^0 \rightarrow \Lambda_c^+ \pi^-$ (BR=100%, strongly decay) $\Sigma_c^{++} \rightarrow \Lambda_c^+ \pi^+$ (BR=100%, strongly decay) x3/2 to count Σ_c^+ (udc)

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Heavier charm baryons: $\Sigma_{c}^{0,+,++}$ in pp@13 TeV

Effect of $\Sigma_c^{0,+,++}$ feed-down contribution on Λ_c^+/D^0 enhancement

~40% contribution, only partially explained by $\Sigma_c^{0,+,++}$ feed-down

arXiv:2106.08278

- PYTHIA8 Monash^[1] severely underestimates Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$
- PYTHIA8 CR Modes^[2] overestimate Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$
- SHM^[3]+RQM^[4] describes both Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$
- Catania^[5] and OCM^[6] also provide good description of data **CERN-LHC Seminar**

Charm production and hadronisation at the LHC with ALICE

📄 [1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] M. He and R. Rapp, PLB 795 (2019) 117-121 [4] D. Ebert, et al., PRD 84:014025, 2011 [5] V. Minissale, et al., arXiv:2012.12001 [6] J. Song, et al., EPJC (2018) 78: 344

Heavier charm baryons: $\Sigma_c^{0,+,++}$ in pp@13 TeV

Effect of $\Sigma_c^{0,+,++}$ feed-down contribution on Λ_c^+/D^0 enhancement

~40% contribution, only partially explained by $\Sigma_{c}^{0,+,++}$ feed-down

- <u>PYTHIA8 Monash^[1]</u> severely underestimates Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ and $\Sigma_c^{0,+,++}/D^0$
- PYTHIA8 CR Modes^[2] overestimate $\Lambda_c^+ (\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$, but describe $\Sigma_c^{0,+,++}/D^0$
- SHM^[3]+RQM^[4] describes both Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ and $\Sigma_c^{0,+,++}/D^0$
- Catania^[5] and OCM^[6] also provide good description of data **CERN-LHC Seminar**

Charm production and hadronisation at the LHC with ALICE

[1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] M. He and R. Rapp, PLB 795 (2019) 117-121 [4] D. Ebert, et al., PRD 84:014025, 2011 [5] V. Minissale, et al., arXiv:2012.12001 [6] J. Song, et al., EPJC (2018) 78: 344

Heavier charm baryons: $\Xi_c^{0,+}$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm mesons				Charm baryons				
	D ⁰ (uc)	D ⁺ (dc)	D*+ (dc)	D_{s}^{+} (sc)	Λ_{c}^{+} (udc)	Σ_{c}^{0} (ddc)	Σ_{c}^{++} (uuc)	Ξ _c + (usc)	Ξ _c ⁰ (dsc)	${\Omega_{c}}^0$ (ssc)
Strangeness		0		1		0		1		2
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8	—	151.2	60.7	—	_	136.6	45.8	80

$$\begin{split} &\Xi_{\rm c}^{0} \to \Xi^{-} \pi^{+} \, ({\sf BR}{=}1.43\%) \\ &\Xi_{\rm c}^{0} \to {\rm e}^{+} \Xi^{-} \nu_{\rm e} \, ({\sf BR}{=}1.8\%) \\ &\Xi_{\rm c}^{+} \to \Xi^{-} \pi^{+} \pi^{+} \, ({\sf BR}{=}2.86\%^{[1]}) \end{split}$$

CERN-LHC Seminar

Heavier charm baryons: Ξ_c^0 and Ξ_c^+ in pp@5.02 and 13 TeV

- Ξ_c^0/D^0 in agreement with Ξ_c^+/D^0
- $\Xi_c^{0,+}/D^0$ similar p_T trend as Λ_c^+/D^0
- PYTHIA8 Monash^[1] largely underestimates data

- [1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003
- [3] M. He and R. Rapp, PLB 795 (2019) 117-121
- [4] D. Ebert, et al., PRD 84:014025, 2011

CERN-LHC Seminar

[5] J. Song, et al., EPJC (2018) 78: 344 [6] V. Minissale, et al., arXiv:2012.12001 [7] Belle e⁺e⁻: PRD 97 (2018) 7, 072005

Charm production and hadronisation at the LHC with ALICE

rXiv:2105.05616

- 3 CR-BLC Modes^[2] and SHM^[3]+RQM^[4] predict significantly larger ratio w.r.t. Monash, but largely underestimate data
- QCM^[5], further enhanced, still NOT describe the data
- Catania^[6] better describes measurements

Heavier charm baryon: Ω_c^0

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm	mesons		Charm baryons					
	D ⁰ (uc)	D ⁺ (dc)	D*+ (dc)	D_{s}^{+} (sc)	Λ_{c}^{+} (udc)	Σ_{c}^{0} (ddc)	Σ_{c}^{++} (uuc)	Ξ_{c}^{+} (usc)	Ξ_{c}^{0} (dsc)	${\Omega_{\sf c}}^0$ (ssc)
Strangeness		0		1		0		1		2
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8	_	151.2	60.7	_	_	136.6	45.8	80

 $\Omega_{\rm c}^0 \rightarrow \Omega^- \pi^+$ (BR unknown)

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Heavier charm baryons: Ω_c^0 in pp@13 TeV

- $BR(\Omega_c^0 \rightarrow \pi^+ \Omega^-) = (0.51 \pm 0.07)\%$ theoretical calculation
- PYTHIA8 Monash^[1] largely underestimates Ω_c^0 , also for Ω_c^0/D^0 and Ω_c^0/Ξ_c^0
 - Do not reproduce strangeness enhancement in pp
- PYTHIA8 CR-BLC^[2] NOT enough to describe the measurement
- Further enhancement with simple coalescence QCM^[3] still NOT describe data
- Catania^[4] closer to data points, additional resonances decay considered

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Coalescence in pp?

[1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] J. Song, et al., EPJC (2018) 78: 344 [4] V. Minissale, et al., arXiv:2012.12001 [5] Belle e⁺e⁻: PRD 97 (2018) 7, 072005

Charm fragmentation fractions at the LHC

 D^0 and D^+ down to 0, D_s^+ and Λ_c^+ down to 1 GeV/c, Ξ_c^0 down to 2 GeV/c Charm fragmentation fraction calculated as hadron-production cross section over sum of cross sections of all ground-states of charm hadrons: $f(c \rightarrow H_c) = \sigma(H_c) / \Sigma_i \sigma(H_{c_i})$

H _c	$f(\mathbf{c} \rightarrow \mathbf{H}_{\mathbf{c}})[\%]$	e arXiv:2105.063
D^0	$39.1 \pm 1.7(\text{stat})^{+2.5}_{-3.7}(\text{syst})$	
D^+	$17.3 \pm 1.8(\text{stat})^{+1.7}_{-2.1}(\text{syst})$	
D^+_s	$7.3 \pm 1.0(\text{stat})^{+1.9}_{-1.1}(\text{syst})$	
$\Lambda_{ m c}^+$	$20.4 \pm 1.3(\text{stat})^{+1.6}_{-2.2}(\text{syst})$	
$\Xi_{\rm c}^0$	$8.0 \pm 1.2(\text{stat})^{+2.5}_{-2.4}(\text{syst})$	imes 2 to includ
D^{*+}	$15.5 \pm 1.2(\text{stat})^{+4.1}_{-1.9}(\text{syst})$	Feed into D ⁽

 e^+e^- and ep: $f(c \to \Xi_c^0)/f(c \to \Lambda_c^+) = f(s \to \Xi^-)/f(s \to \Lambda) \approx 0.004^{[1]}$

pp: $f(c \to \Xi_c^0)/f(c \to \Lambda_c^+) = 0.39 \pm 0.07(\text{stat})^{+0.08(\text{syst})}_{-0.07(\text{syst})}$ [4]

[1] B factories: EPJC 76 no. 7, (2016) 397 [2] LEP: EPJC 75 no. 1, (2015) 19 [3] HERA: EPJC 76 no. 7, (2016) 397 **CERN-LHC** Seminar Charm production and hadronisation at the LHC with ALICE

Charm fragmentation fractions not universal!

[4] ALICE: arXiv:2105.05616

Charm and beauty production cross section at the LHC

- [3] FONLL: JHEP 10 (2012) 137
- [4] Charm NNLO: PRL 118 (2017) 12, 122001

Charm:

~40% higher when charm baryons included

On upper edge of FONLL^[3] and NNLO^[4] calculations

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

[5] ALICE non-prompt D: JHEP 05 (2021) 220 [6] ALICE non-prompt J/ψ : JHEP 11 (2015) 065 [7] ALICE b→e: PLB 721 (2013) 13-23 [8] ALICE dielectrons: PRC 102 (2020) 5, 055204 [9] PHENIX: PRL (2009) 103, 082002 [10] UA1: PLB 256 (1991) 121-128 [11] CDF: PRL 91 (2003) 241804 [12] Beauty NNLO: JHEP 03 (2021) 029

Beauty:

Described widely by FONLL^[3] and NNLO^[12] calculations

- D^+/D^0 : flat distribution, NOT modified in QGP
- D_s^+/D^0 : hint of enhancement at intermediate p_T in strangeness-rich QGP
- Λ_c^+/D^0 : hint of further enhancement in Pb-Pb at intermediate p_T
 - Hadronisation mechanism? Radial-flow push in Pb-Pb?

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Much more precise measurements in Run 3

Summary

Charm hadronisation mechanisms need further investigations

Models	$\Lambda_{ m c}/{ m D}^{ m 0}$ (no s)	$\Sigma_{ m c}/{ m D}^{ m 0}$ (no s)	$\Xi_{\rm c}/{\sf D}^0$ (s)	$\Omega_{ m c}/{ m D}^{ m 0}$ (ss)
PYTHIA8 Monash				
PYTHIA8 CR Mode	<u>:</u>	\odot		
SHM+RQM	<u>:</u>	\odot		_
QCM	<u>:</u>	\odot		
Catania	<u>:</u>	<u>:</u>		

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Jummary

Charm hadronisation mechanisms need further investigations

Models	$\Lambda_{ m c}/{ m D}^{ m 0}$ (no s)	$\Sigma_{ m c}/{ m D}^{ m 0}$ (no s)	$\Xi_{\rm c}/{\sf D}^0$ (s)	$\Omega_{ m c}/{ m D}^{ m 0}$ (ss)
PYTHIA8 Monash				
PYTHIA8 CR Mode	<u>:</u>	\odot		$\overline{\dot{}}$
SHM+RQM	<u>:</u>	\odot		_
QCM	<u>:</u>			
Catania			<u>:</u>	

- ~40% charm quarks hadronise to charm baryons
- Charm fragmentation fractions are NOT universal
- NNLO calculations

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Large enhancement of all charm baryons in pp collisions at LHC w.r.t. e^+e^- and ep collisions

Total charm cross sections in pp at different collision energies are on upper edge of FONLL and

Outlook: Run 3

ALICE upgrade for Run 3

Improved resolution with new silicon ITS2^[1]

- Faster readout with GEM-based TPC readout (statistics 1x100)
- Improvement in the precision of heavy flavor measurements

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

- Pointing resolution for ITS2 (charged pions)
 - ×3 and x6 improvement in $r\phi$ and z for 0.5 GeV/c
 - ▶ 40 µm for 0.5 GeV/*c*

[1] ITS2 TDR: CERN-LHCC-2013-024

Outlook: Run 4

ALICE upgrade for Run 4

- Improvement of pointing resolution (x2) with ITS3^[1] w.r.t. ITS2
- Increase of tracking efficiency for low- $p_{\rm T}$ particles and extension of the low- $p_{\rm T}$ reach

CERN-LHC Seminar

ALI-SIMUL-482042

Outlook: Run 5 and beyond (ALICE 3)

- Double charm baryons ($\sim fb^{-1}$ region for pp)

$$\Xi_{cc}^{++} \to \Xi_{c}^{+} + \pi^{+}$$

$$\Xi_{cc}^{+} \to \Xi_{c}^{0} + \pi^{+}$$

$$\square_{cc}^+ \to \Omega_c^0 + \pi^+$$

CERN-LHC Seminar

For multi-charm in A-A collisions, expect large enhancement by 2~3 orders of magnitude

A. Andronic, et al., JHEP 07 (2021) 035

Charm production and hadronisation at the LHC with ALICE

Lol in preparation

A first indication of hadronisation universality breaking

HEP 1804 (2018) 108

[1] GM-VFNS: EPJC 41 (2005) 199–212 📄 [2] GM-VFNS: EPJC 72 (2012) 2082 [3] POWHEG: JHEP 09 (2007) 126

CERN-LHC Seminar

[4] PYTHIA6: JHEP 05 (2006) 026

[5] Shao et al.: EPJC 77 no. 1, (2017) 1

[6] EPS09NLO: JHEP 04 (2009) 065

- pQCD calculations underestimate Λ_c^+ baryon production, but in good agreement with D mesons
- Note: GM-VFNS (General Mass Variable Flavour Number Scheme)^[1,2] uses FF tuned from e⁺e⁻ data
- Same considerations of comparisons with models hold in p-Pb collisions
- Shao et al. model^[5] based on pp LHC data (LHCb) + nPDF^[6]

A sensitive hadronisation quantity: Λ_c^+/D^0

JHEP 1804 (2018) 108

ALI-PUB-141413

[1] CLEO: PRD 43 (1991) 3599-3610 [2] ARGUS: PLB 207 (1988) 109-114 [3] ARGUS: Z. Phys. C 52 (1991) 353-360 [4] LEP: EPJC 75 no. 1, (2015) 19

[5] ZEUS DIS: JHEP 11 (2010) 009 [6] HERA I: EPJC 44 (2005) 351-366 [7] HERA II: JHEP 09 (2013) 058

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

JHEP 1804 (2018) 108

	$\Lambda_{\rm c}^+/{ m D}^0\pm{ m stat.}\pm{ m syst.}$	System	\sqrt{s} (GeV)
CLEO [1]	$0.119 \pm 0.021 \pm 0.019$	ee	10.55
ARGUS [2,3]	0.127 ± 0.031	ee	10.55
LEP average [4]	$0.113 \pm 0.013 \pm 0.006$	ee	91.2
ZEUS DIS [5]	$0.124 \pm 0.034 ^{+0.025}_{-0.022}$	ep	320
ZEUS γp, [6] HERA I	$0.220 \pm 0.035 ^{+0.027}_{-0.037}$	ep	320
ZEUS γp, [7] HERA II	$0.107 \pm 0.018 ^{+0.009}_{-0.014}$	ep	320

No significant change from pp to p-Pb "Tension" with e^+e^- and ep results Due to collision system and/or energy ?

Charm fragmentation to baryons not well understood

Charm meson-to-meson yield ratio

- D⁺/D⁰: compatible prompt and non-prompt

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

D-meson production ratios flat in $p_{\rm T}$ and in good agreement with pQCD using FF extracted from e^+e^-

 $D_{c}^{+}/(D^{0} + D^{+})$: higher for non-prompt D mesons, substantial contribution from b $\rightarrow c\bar{c}s$ weak decays

$\Sigma_{\rm c}$ suppression from spin-1 diquark suppression in e⁺e⁻

- Λ_c production rate higher than extrapolation of hyperon curve to charm mass window
- spin-0 diquark component for Λ_c

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

Different production mechanism, points to important role of diquark production for charm baryons Λ_c and Σ_c cross-section difference support charm baryon production from diquark degrees of freedom and a

$\Lambda_{\rm c}^+$ in Au–Au collisions at $\sqrt{s_{\rm NN}} = 200 \,\,{\rm GeV}$ at RHIC

PRL 124 (2020) 17, 172301

CERN-LHC Seminar

Charm baryon-to-baryon yield ratio

pp vs. models :

- Largely underestimated by PYTHIA8 Monash^[1], CR-BLC^[2], QCM^[3], SHM^[4]+RQM^[5]
- Catania^[6] closer to data points, especially resonances decay considered pp vs. e⁺e⁻:
- Similar enhancement for $\Xi_c^{0,+}$ and $\Sigma_c^{0,+,++}$
- Further enhancement for Ω_c^0

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

C^[2], QCM^[3], SHM^[4]+RQM^[5] lecay considered

- [1] PYTHIA8 Monash: EPJC 74 (2014) 3024
- [2] PYTHIA8 Mode2: JHEP 08 (2015) 003
- [3] QCM: EPJC 78 no. 4, (2018) 344
- [4] SHM: PLB 795 (2019) 117-121
- [5] RQM: PRD 84 (2011) 014025
- [6] Catania pp: arXiv:2012.12001
- [7] Catania NN: EPJC 78 no. 4, (2018) 348

Integrated production yield vs. D^0 in pp@5.02 TeV

- PYTHIA8 with different tunes similar for D mesons and describe measurements within uncertainties Large effect found in PYTHIA8 CR-BLC for charm
 - baryons formation
 - Only describe Λ_c^+ , underestimate Ξ_c^0

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

- SHM for charm mesons : small variations with two hadronisation temperatures and consistent with measurements SHM for charm **baryons** : significant variations with two hadronisation temperatures and large variations with RQM
 - SHM+RQM describes Λ_c^+ , but not Ξ_c^0

Strange hadronisation in p-Pb collisions

CERN-LHC Seminar

Charm hadronisation in p-Pb collisions

Charm production and hadronisation at the LHC with ALICE

Charm hadronisation vs. multiplicity from pp to Pb-Pb

- Λ_c^+/D^0 : baryon enhancement (w.r.t. meson) at low and intermediate p_T
- What about strangeness+baryon ($\Xi_c^{0,+}$ and Ω_c^0)?

CERN-LHC Seminar

Charm production and hadronisation at the LHC with ALICE

geness) at low and intermediate p_{T} and intermediate p_{T}

