
Log Analysis
for CERN’s file transfer service

Authors:
Giovanni Marchetti, Google

Version:
0.2

Date:
12/3/2021

Reviewers:
Panos Paparrigopoulos, CERN
Federica Legger, CERN
Alessandro Di Girolamo, CERN
Grazia Frontoso, Google
Alex Schroeder, Google

0.2

Summary
Anomaly detection techniques designed for data streams over dynamic graphs have shown
promising results in identifying patterns in time and space within CERN’s transfer service logs.
Topic modelling over the content of the logs has found several clusters and most relevant terms
therein.
The combination of the two techniques can be a powerful tool for CERN to detect, prioritize and
diagnose problems in their transfer service. Further research is warranted to perfect the
approach.

Problem Definition
Given a set of more than 69 million log entries from CERN’s file transfer service, we were asked
to identify patterns that may indicate problems and to analyze the text of such entries. The end
goal of this proof-of-concept study is to help the IT support team identify critical events and
prioritize resource allocation.

Data Exploration
An initial exploration of the dataset highlighted that most errors occurred from 6th to 11th
October 2019. Their distribution was not uniform across categories, with a majority attributable
to two of those:

- Communication_error_on_send
- No_such_file_or_directory

1

Figure 1: Quantity and type of errors over time

While it is possible for a transfer job to contain multiple tasks that fail or succeed for a variety of
reasons, most failed for only one of the possible types of error.

Figure 2: Count of tasks and failure types per job id

2

Error distribution not only varied over time, but also over the interconnections between nodes. A
few nodes were responsible for most failures, and the connection pattern was dynamic.

Figure 3: Count of errors over connection pairs

Figure 4: Variation over time for a given connection pair

Anomaly Detection
Given the observed changes in error distribution across time, connection graph and content (as
represented by the error categories), we investigated graph anomaly detection algorithms as a
possible way to identify patterns in the logs.
Given the quantity of data, the algorithm needed to be scalable and memory-efficient.
MIDAS1 (MIcrocluster-based Detector of Anomalies in Streams) seemed a good fit:

- It finds anomalies in dynamic graphs (such as those generated by file transfers, but also
intrusions)

- It detects micro-clusters (sudden “burst” of connections between nodes, such as those
that may occur with multiple retrials, but also denials of service)

- Memory usage is constant and independent of graph size
- Update time in streaming scenarios is also constant

1 See https://arxiv.org/pdf/1911.04464.pdf

3

https://arxiv.org/pdf/1911.04464.pdf

The algorithm returns a floating-point score, which we can use to highlight the most anomalous
connections on a graph in a given time window.

Figure 5: Connection graph between nodes. The darker the link, the higher the anomaly score.

Given the size of the graph, a useful visualization may be a chord diagram, which captures the
status at a given time slice. A sequence of such diagrams shows the evolution of the system.

Figure 6: Chord diagram of number of errors between nodes at a given time

4

Figure 7: Chord diagram of anomaly scores at a given time

It is important to note that while the quantity of errors contributes to the anomaly score, it is not
the only factor. Unusual structures in time (e.g. sudden bursts) and space (e.g. infrequent node
pairs) also play a role. Besides, the algorithm is unsupervised. It will find anomalies in the data
set. If the data set contains only errors, the anomalies may be in their quantity or frequency.
For it to be most useful, it is necessary to provide a complete set of logs, where most events are
regular and errors are the anomalies.

Text Analysis
The content of the error message is useful in identifying patterns and clusters of anomalies. To
include it as a feature in our detection algorithm, it is necessary to encode it. For that purpose,
we opted for Google’s universal sentence encoder2.
The model is trained on sentences, phrases and paragraphs rather than just words. The training
corpus comes from several sources in order to accommodate a variety of tasks in the field of
natural language understanding. While not specifically trained on computer logs, the vocabulary
is large enough to include phrases that are likely to appear there.

2 See https://arxiv.org/abs/1803.11175

5

https://arxiv.org/abs/1803.11175

The encoder accepts variable-length text as input and returns a 512-element floating-point
vector, also known as an embedding.

Topic Modelling
Topic modelling refers to techniques for extracting topics from documents. Documents with
similar topics will be clustered together in the space defined by the embedding vectors. The
center of the cluster will represent the topic for that group of documents.
Clustering algorithms do not work well in high dimensions; hence, we want to project those
embedding vectors into a lower-dimensional space, while preserving as much of the information
structure as possible.
UMAP3 (Uniform Manifold Approximation and Projection) is a good method to do just that. In our
experiments, we chose a five-dimensional space for computation and a two-dimensional one for
visualization convenience.
HDBSCAN4 was then used for clustering in five dimensions. The algorithm employs a
density-based approach, i.e. it looks for regions in a given space with higher density than their
surroundings. It makes few assumptions on the shape and number of such regions, so it is
particularly effective with noisy data, such as those produced by natural language processing.
On a random sample of 100,000 errors, the analysis identifies 28 topic clusters of 100 elements
or more.

Figure 8: Topic clusters

4 See https://link.springer.com/chapter/10.1007%2F978-3-642-37456-2_14
3 See https://arxiv.org/abs/1802.03426

6

https://link.springer.com/chapter/10.1007%2F978-3-642-37456-2_14
https://arxiv.org/abs/1802.03426

For each cluster, we derived a set of words that is representative of that topic. In order to do so,
we scored their relevance by applying a variant of the TF-IDF (term-frequency, inverse
document frequency) algorithm.
For instance, for topic 7 (the third error cluster by size) we obtained a set:

[('directory', 0.17291778055209286),
('500', 0.15570131031862802),
('file', 0.1286784223961737),
('command', 0.1066864092846095),
('open', 0.10410957212360271),
('end', 0.08719723353418019),
('failed', 0.07795190609928998),
('globus_ftp_client', 0.06742707786890055),
('responded', 0.04539232049655455),
('transfer', 0.040571536293723606)]

corresponding to messages such as:

'TRANSFER globus_ftp_client: the server responded with an error 500 500-Command failed. :
System error in open: No such file or directory 500-A system call failed: No such file or directory
500 End. '

The topic information can be used to analyze and classify errors. It may also help identify
probable cause (using the relevance score), although further research is warranted to validate
this hypothesis.

Extension to complete logs
The clustering approach can be extended to the full logs. In that case, as expected, the largest
cluster (topic 0) will contain successful transfers, as shown in figure 9. Keeping the minimum
size at 100, the algorithm identifies 60 clusters. The content of the top ones corresponds to what
we found for the error-only example; for instance, the 3rd error cluster (topic 21 in figure 9) still
contains messages like “no such file or directory”.

7

Figure 9: The largest cluster represents successful transfers, errors are outliers

Text features in anomaly detection
Anomalies in traffic over a connection graph are not limited to the dynamic aspect of the graph
itself; the information passed over such connections is also relevant. We must consider not only
the number, timing and location of links between nodes, but also the messages. Other metadata
such as user, file size etc… may play a role too.
To detect anomalies on such multi-aspect data, we used the MSTREAM5 algorithm, derived
from MIDAS, because:

- It works with both categorical and numerical features.
- It consumes a constant amount of memory and a constant amount of time for each

record, thus it scales well with the quantity of data we have.
- It captures correlation among multiple features.

MSTREAM returns a floating point anomaly score.

Table 1: Anomaly scores of mostly successful transfers (topic = 0)

5 See https://arxiv.org/pdf/2009.08451.pdf

8

https://arxiv.org/pdf/2009.08451.pdf

Table 2: Anomaly scores of failed transfers (topic ≠ 0)

As previously observed, the anomaly score for failed transfers tends to be greater than for
successful ones, but that is not always the case. Other factors, such as unusually large or
infrequent transfers, also contribute to it. In our experiment, out of the 1,000 most anomalous
events, about 85% were actual errors, while about 15% were unusual events (so precision at
1000 is 0.85). One can filter the latter out using the topic value.
The score can also be used as a way to help the support teams prioritize events. However, this
suggestion warrants further research and validation.

Figure 10: Topic distribution over the 1000 most anomalous entries

Recommendations
The MSTREAM anomaly detection approach in conjunction with topic modelling has shown
promising results in identifying and scoring error patterns. We suggest further investigation with:

- Datasets covering a longer period of time, thus capturing more of the “usual” workload.
This will allow us to refine the anomaly detector.

- More features out of the existing data, once their relevance is verified.
- A prototype streaming detector, running as a container, that generates online scores. It

can be used to validate the approach with the support team.

9

Finally, if the end goal is to help the support team prioritize their work, one may consider
introducing a measure of severity. It can either be explicit (e.g. set by the user or support team)
or implicit (derived from other criteria yet to be determined). Given that, one can then explore
recommender-based techniques to compute severity, in addition to anomaly.

Implementation
For experimental purposes, we recommend:

- Google BigQuery to store the input data and the output scores, perform data
transformation and aggregation.

- AI Platform Notebooks for development and training of the models.
- Datastudio for reporting and visualization, accelerated by BigQuery BI engine.
- Google Kubernetes Engine or AI Platform prediction service to deploy the trained models

as containers in production.

References
S. Bhatia et al., MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams, AAAI 2020
S. Bhatia et al., MSTREAM: Fast Anomaly Detection in Multi-Aspect Streams, WWW 2021
L. McInnes et al., Umap: Uniform Manifold Approximation and Projection for Dimension
Reduction, arXiv preprint arXiv:1802.03426, 2018
R. Campello et al., Density-Based Clustering Based on Hierarchical Density Estimates, PAKDD
2013
D. Cer et al., Universal Sentence Encoder, arXiv preprint arXiv:1803.11175, 2018

10

