Select Recent Tevatron Results Tutorial for LHC

Outline

- **1.** Introduction
- 2. Boosted Objects Search Testing QCD
- **3.** Searching for Boosted Top Quarks
- 4. Forward-Backward Production Asymmetry
- 5. Improvements to Higgs search
 - Adding yy Final States
 - More Data
- 6. Summary

Pekka K. Sinervo, FRSC University of Toronto

North American ATLAS Physics Workshop Arlington, Texas

University of Toronto

Goals of this Talk

CDF II now has ~8 fb-1

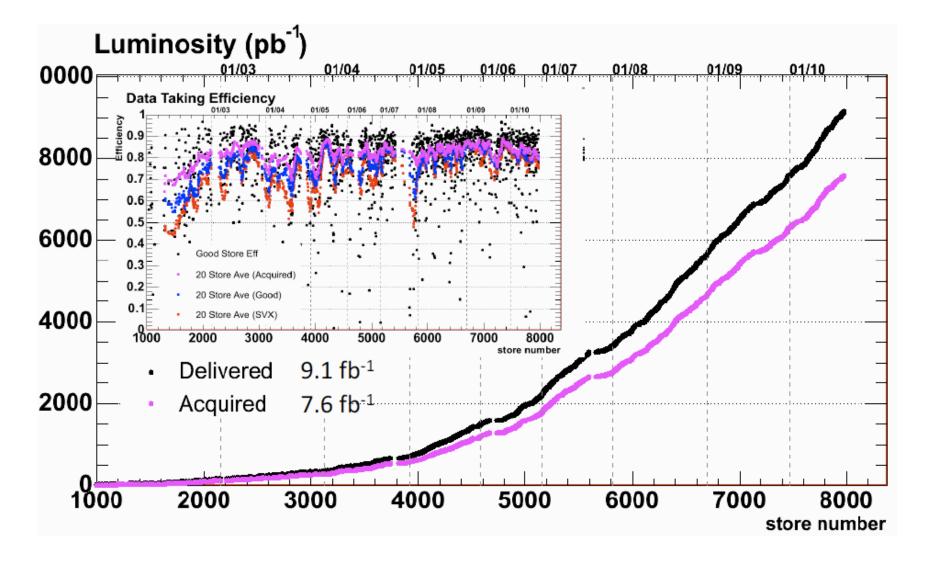
- Starting to explore kinematic boundaries
- Working with multiple interactions (3-4/ crossing)
- LHC-like conditions for
 L_{LHC} ~ 5x10³⁰ cm⁻²s⁻¹
 Have comparable number of multiple

interactions

Focus on a couple of "new" analyses

• Massive, boosted objects

- Study QCD predictions for jet mass for p_T > 400 GeV/c
- > Measure substructure
 - Angularity
 - Planar flow

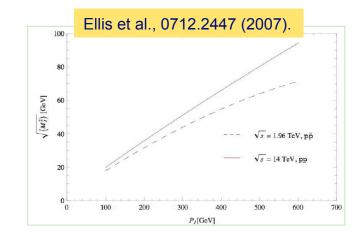

Boosted top search

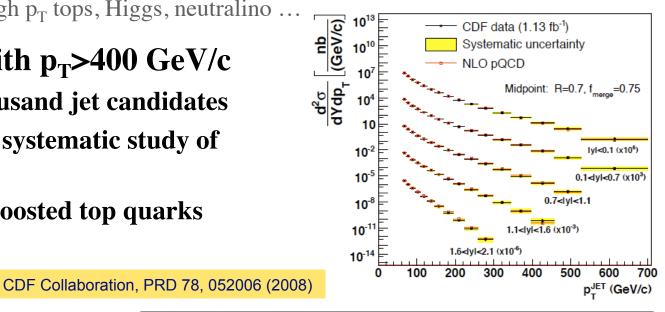
▹ Use high p_T jet sample

Latest Higgs search

 Additional channels and statistics

Integrated Luminosity is Key

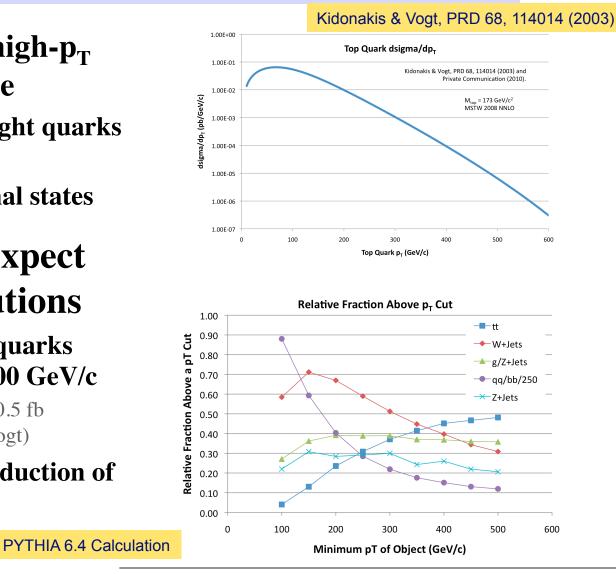

Boosted Study Motivation


Mass of high-p_T jets important property, but only theory studies

- High mass: QCD at NLO predicts jet mass \bigcirc (eg., Ellis et al, 0712.2447, Alemeida, et al. 0810.0934)
- Such jets form significant background Ο to new physics signals
 - \triangleright Examples: high p_T tops, Higgs, neutralino ...

Focus on jets with $p_T > 400 \text{ GeV/c}$

- **CDF II 3-4 thousand jet candidates** 0
- **Reporting first systematic study of** substructure
- First look for boosted top quarks

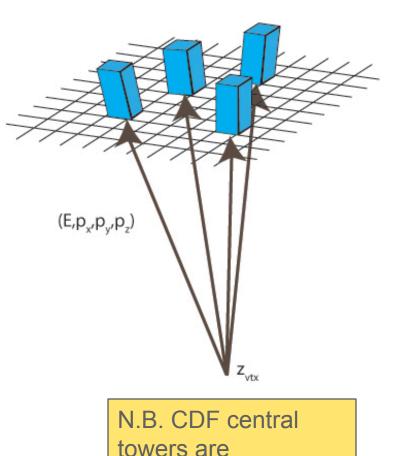


Boosted Objects at Tevatron

- SM sources for high-p_T objects calculable
 - Dominated by light quarks & gluons
 - Mostly qq/qg final states

However, do expect other contributions

- Fraction of top quarks
 ~1.5% for p_T>400 GeV/c
 - Total rate 4.45±0.5 fb (Kidonakis & Vogt)
- Expect W/Z production of similar order



Strategy for Analysis

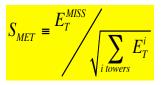
- Select high p_T jets in CDF central calorimeter
 - Use tower segmentation to measure jet mass
 - Calibrate with tracking information
 - Employ standard "e-scheme" for mass calculation
 - > Each tower is a particle with m = 0
 - > Four vector sum gives (E,p_x,p_y,p_z)
 - ▹ Have ~50 towers in R=0.7 jet

Employ Midpoint cone jets

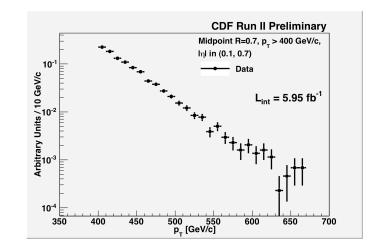
- Best understood in CDF II context
- However, not fully IR-safe

Δη x Δφ ~ 0.11 x 0.26

Data Selection


Analyzed inclusive jet sample

- Trigger requires E_T>100 GeV
- Fully efficient for E_T>130 GeV
- Selected data with focus on high p_T objects
 - Kept any event with
 - > Jet with p_T >300 GeV/c and $|\eta| < 0.7$
 - Use cones of R=0.4, 0.7 and 1.0


Processed 76M events

- Selected subsample with
 - ▶ p_T>400 GeV/c
 - $> |\eta| \in (0.1,0.7)$

Performed cleaning cuts

- Event vertex, jet quality and loose S_{MET} (< 14)
- Resulted in 3621 events using jets with R=0.7
 - 3136 events with R=0.4


Jet Mass Corrections

Corrected jet mass using standard jet corrections

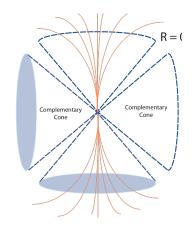
- Further correction needed for multiple interactions (MI)
- Use Nvtx=1 and Nvtx>1 events to determine MI

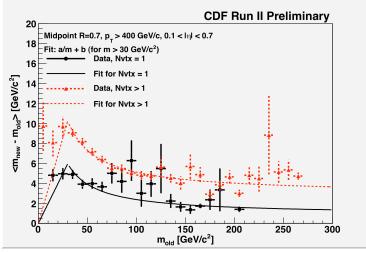
Investigated numerous effects

- Cluster merging
- \circ Effect of calorimeter inhomogeneity at $\eta=0$
 - Varied pseudorapidity window no significant changes in mass
- Calorimeter segmentation and jet recombination
 - > Varied position of towers (especially azimuth) and corrections for geometry
- Jet mass and substructure resolution/systematics
 - > Detailed study of tracking/calorimeter response in data and MC/detector simulation

MI and UE Corrections

Additional contributions from


- Underlying Event (UE)
- Multiple Interactions (MI)
 - > Average # interactions ~3
- Corrected for MI


Looked at purely dijet events

- $\circ \quad \text{Defined cones (same size as jet) at 90° in} \\ azimuth (same \eta) \\$
- Took towers in cones, and added to jet in event
 - Mass shift, on average, same shift coming from UE and MI

Separately measure N_{vtx}=1 events

• Gives UE correction separately

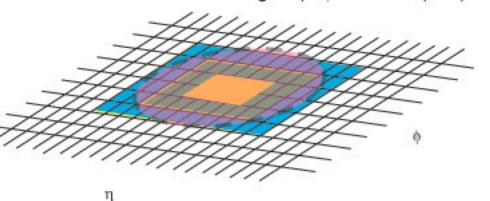
Correction

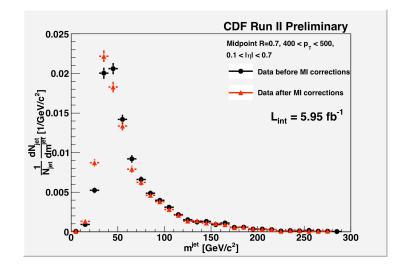
scales as R⁴

9

Inter-Jet Energy Calibration

Jet mass arises from deposition of varying energy per tower


- Performed study to compare momentum flow vs calorimeter energy internal to jet
 - Defined 3 rings and compared observed pT/ET with simulation


Resulted in constraints on calorimeter relative response

- At m^{jet}=60 GeV/c², σ_m =1 GeV/c²
- $\circ~$ At m^{jet}=120 GeV/c², σ_{m} =9.6 GeV/c²

Largest source of systematic uncertainty

Ring 1 ΔηΧΔφ=0.44x0.52 (yellow) Ring 2 ΔηΧΔφ=0.88x1.04 (green) Ring 3 ΔηΧΔφ=1.32x1.57 (blue)

Systematics on m^{jet}

Sources of systematics:

• Calorimeter energy scale

 Varies from 1 to 9.6 GeV/c² for 65 to 120 GeV/c² mass jets

• UE and MI modelling

 Estimate 2 GeV/c² based on uncertainty in high mass correction

• Recombination scheme & calorimeter segmentation

Estimate 2.2 GeV/c² based on comparison of offline and ntuple results

• PDF Uncertainties

 Used standard 20 eigenvector decomposition to assess MC uncertainties

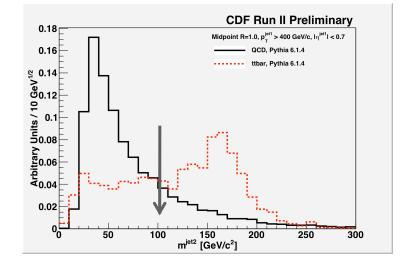
Believes uncertainties on data are uncorrelated

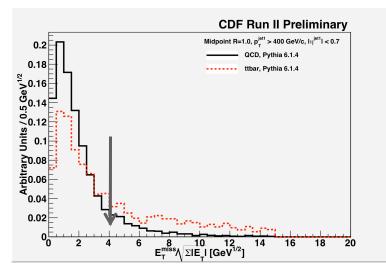
• Combined in quadrature, gives total jet mass uncertainty of

- > 3.4 GeV/c^2 for $m^{\text{jet}} = 60 \text{ GeV/c}^2$
- > 10.5 GeV/ c^2 for $m^{jet} > 100 \text{ GeV}/c^2$

Effects jet mass distributions arising from bin-to-bin migration

- See a small systematic shift in other substructure variables
- More detailed investigation underway

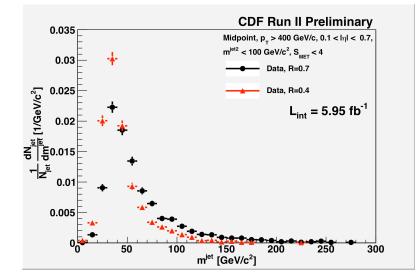

Reducing Top Contamination


Expect about 2.2 fb of high p_T jets from top in sample

- Eliminate by rejecting events with
 - > m^{jet2} > 100 GeV/c²
 - > Missing E_T Significance $(S_{MET}) > 4$
- Use jet cone of R=1.0 for improving top jet tagging
 - See clear peak in MC for second jet mass
- Lose 29% of jet candidates
 - > 2576 events using R=0.7 jets
 - > 145 events with jet $p_T > 500 \text{ GeV/c}$

After top-rejection, expect ~0.5 fb of top jets

• Comparable rates for W/Z jets



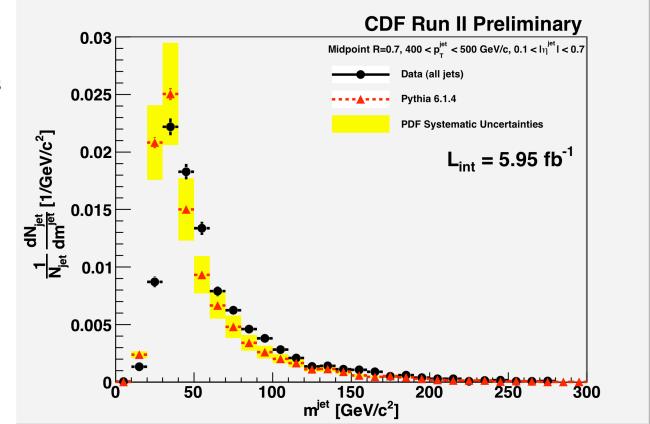
Focus on QCD Behaviour

After top rejection

- Left with sample dominated by light quarks and gluon
- Compare high mass region with QCD theory
- General structure:
 - > Low mass peak ~ $30-40 \text{ GeV/c}^2$
 - Long high-mass tail

Cut Flow		
All Data, 5.95 fb ⁻¹	75,764,270 events	
	$\mathbf{R} = 0.4$	R = 0.7
At least one jet with $p_T > 400 \text{ GeV/c},$ $ \eta \text{ in (0.1, 0.7),}$ and event quality cuts	3136 events	3621 events
$ \begin{array}{c} m^{jet2} < 100 \ GeV/c^2 \ and \\ S_{MET} < 4 \\ (with \ p_T^{\ jet2} > 100 \ GeV/c \ and \ MI \\ corrections) \end{array} $	2579 events	2576 events

- Low-mass peak arises from nonperturbative QCD effects
 - Challenge to understand nonperturbative effects & resolution
 - High mass tail predicted by NLO QCD

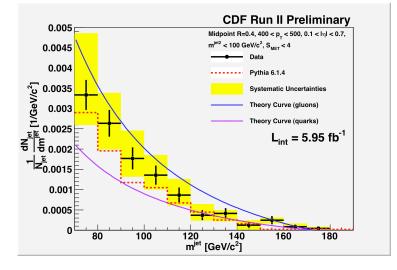

Comparison with PYTHIA

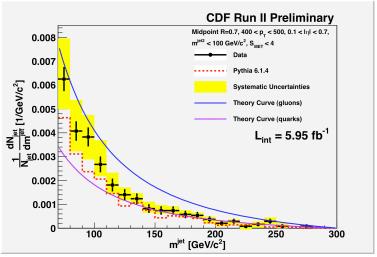
PYTHIA 6.1.4

- Standard CDF II QCD sample
- PDF uncertainties based on eigenvector decomposition

Agreement "OK"

- PYTHIA Lowmass peak few GeV/c² lower
- Systematic underestimate at higher masses


Jet Mass Compared with QCD


Make a direct comparison with QCD theory

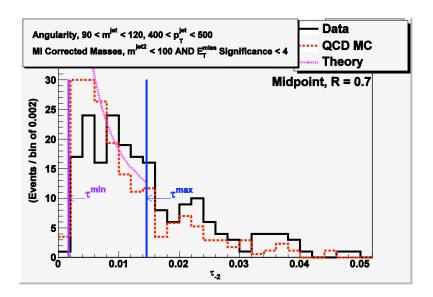
- Good agreement with data and QCD theory prediction
 - Data interpolates between quark and gluon predictions
- Also agreement with PYTHIA MC calculation

Important point:

- Agreement in both rate and shape of distribution
- Cone size dependence correctly predicted

Angularity

Angularity is defined as


(Berger et al. ph/0303051; Almeida et al., 0807.0234)

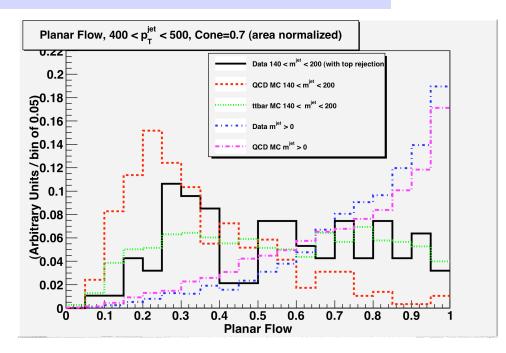
$$\tau_a \left(R, p_T, M_J \right)_{a < 2} = \frac{1}{M_J} \sum_{i \in jet} \omega_i \sin^a \theta_i \left[1 - \cos \theta_i \right]^{1-a}$$

• Emphasizes cone-edge radiation

$$\tau_a \sim \sum_{i \in \mathbb{R}} \frac{\omega_i}{M_J} \theta_i^{2-a} = \sum_{i \in \mathbb{R}} \frac{\omega_i}{M_J} \theta_i^4 \Big|_{a=-2}$$

- For large m^{jet}, have analytic approximation (peaks at low value with large tails)
 - Expected to behave like 1/τ within a specific region
- Start to see difference in data and QCD predictions
 - > See fewer jets at low angularity
 - > On average, more "spherical" jets

Planar Flow


- Planar flow complementary substructure variable
 - Large Pf -> more planar energy distribution
 - Predicted to provide separation between QCD and top

Definition:

 $\circ w_i$ energy of particle I

$$I_{w}^{kl} = \frac{1}{m^{jet}} \sum_{i} \frac{p_{i,k}}{w_{i}} \frac{p_{i,l}}{w_{i}}$$
$$Pf = \frac{4\lambda_{1}\lambda_{2}}{\left(\lambda_{1} + \lambda_{2}\right)^{2}}$$

 $\circ \lambda_1, \lambda_2$ are eigenvalues

- Data prefers somewhat more aplanar configuration than QCD
 - PYTHIA differs significantly data more "top-like"

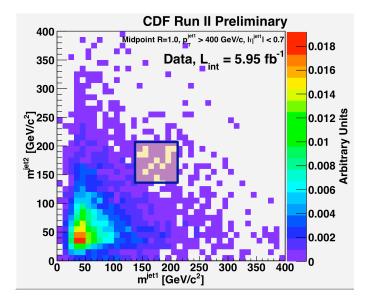
Jet Mass vs Cone Size

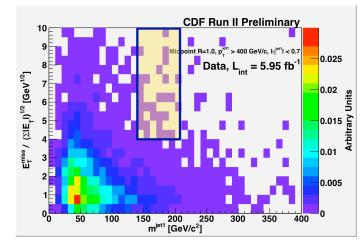
Comparison of cone sizes

- Expect cone size to have an effect on how large-angle radiation is included
- These agree with PYTHIA predictions (see backup slides)

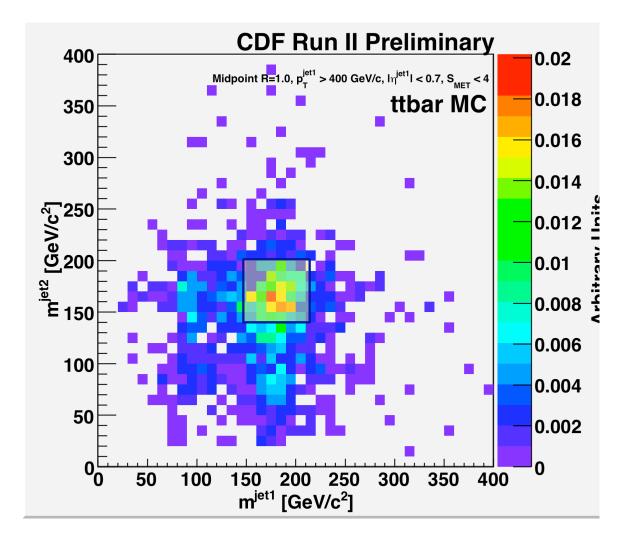
Strategy for Detecting Top

Keep selection simple

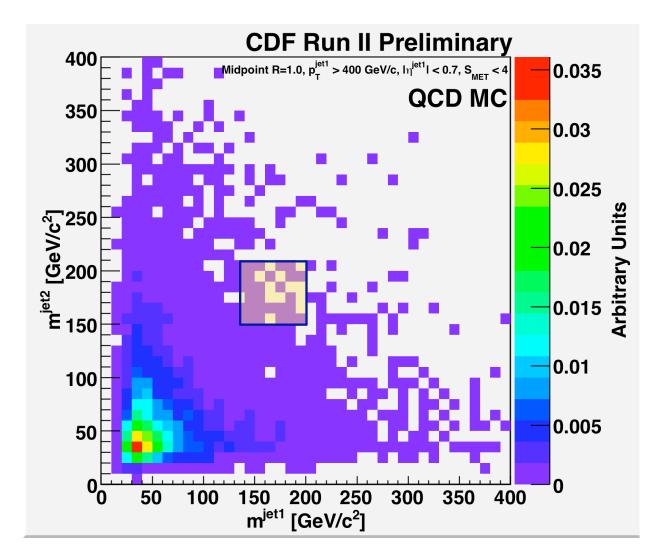

• Focus on two separate channels


All Hadronic Top

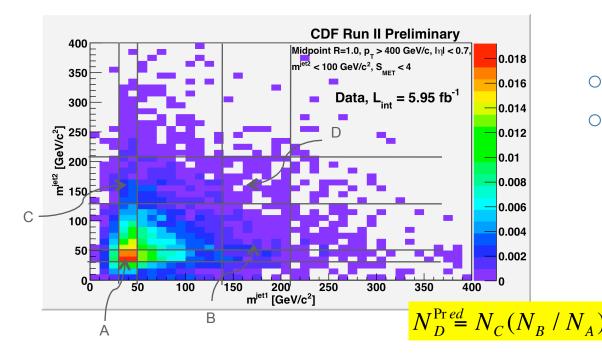
- Require $S_{MET} < 4$
- $\circ \quad \begin{array}{l} \text{Require 2 jets with} \\ 140 < m^{\text{jet}} < 210 \ \text{GeV/c}^2 \end{array}$
- Estimate background using "ABCD" technique


Semi-leptonic top

- Require $4 > S_{MET} > 10$
- Require 1 jet with 140 < m^{jet} < 210 GeV/c²
- Estimate background using "ABCD" technique



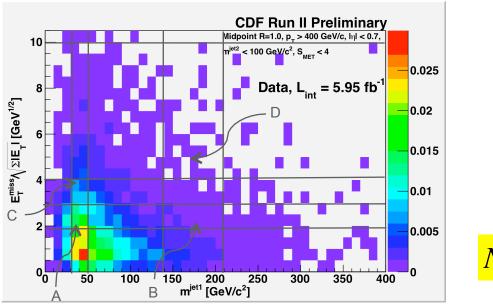
m^{jet2} vs m^{jet1} for Top MC



m^{jet2} vs m^{jet1} for QCD MC

Best "Simple" Counting of 1+1

- With R=1.0 cones, m^{jet1} and m^{jet2} are equally powerful
 - Use jet mass (140,210) GeV/c² to define ttbar candidates
 - Expect 3.5±0.5 top quark events to populate this region



Employ data to estimate backgrounds

- Define mass windows
 m^{jet} ∈(140,210) GeV/c²
 m^{jet} ∈(30,50) GeV/c²
 - Use fact that m^{jet} distributions uncorrelated for background
 - Signal is region D
 - In "1+1" sample, predict 31±5 (stat) bkgd events
 - **Observe** N_D =61 events

Best "Simple" Counting for SL

- In case of recoil semileptonic top, use m^{jet1} and S_{MET}
 - Assumption is the S_{MET} and m^{jet1} are uncorrelated
 - Expect 2.3±0.3 top quark events to populate this region

Employ data to estimate backgrounds

- Use regions m^{jet1} ∈(30,50) & (140,210) GeV/c²
- $S_{MET} \in (2,3) \& S_{MET} \in (4,10)$
 - In "SL" sample, predict 45±7 bkgd events
 - **Observe** N_D =42 events
 - About a -0.4 σ deficit!

$$N_D^{\Pr ed} = N_C (N_B / N_A)$$

Uncertainties

- Background uncertainty (±11 GeV/c2 jet mass scale)
 - Shift window up/down
 - -26% and +34%
- Uncertainties on top efficiency (SM production)
 - Primarily jet energy scale of ±3% -> 24.5%
- Background statistics
 - 0 11.1% from counting
- Luminosity (±6%)
- **MC** m^{top} (±2 GeV/c²)
 - Shift window -> 0.3% change_

- Overall uncertainties added in quadrature
 -38% and + 44%
- Incorporated into upper limit calculation
- Use frequentist method
 - Marginalize nuisance parameters

Top Quark Cross Section Limit

Assume we observe signal + background

 Set upper limit on SM production σ for top quark p_T > 400 GeV/c

Observe 103 events with 76+/-9 background

- Calculate 95% CL upper limit using CLs method
 - Systematic uncertainties incorporated in same way as Higgs search
 - > $N_{LIM} = 69.3$ events
- Efficiency from MC
 - 553 & 343 ttbar expected in 2 channels (out of 4041)
 - \succ Efficiency = 0.212

Upper limit on cross section for p_T>400 GeV/c

$$\sigma_{95\%CL} = \frac{N_{LIM}}{\int L \, dt \, \varepsilon} = \frac{69.3}{(5.95)(0.212)} = 54 \text{ fb}$$

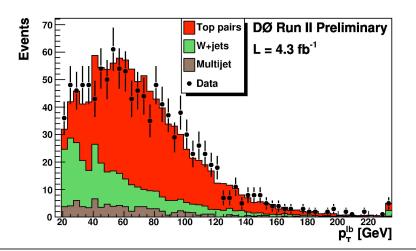
Compare with other limits (using specific Z' models):

- ~600 fb in l+jets (0.96 fb⁻¹)
- ~200 fb in all-hadronic (2.8 fb⁻¹)

Top Quark Production Asymmetry

D0 has made studies of the production asymmetry

$$A_{fb} = \frac{N^{\Delta y > 0} - N^{\Delta y < 0}}{N^{\Delta y > 0} + N^{\Delta y < 0}}$$

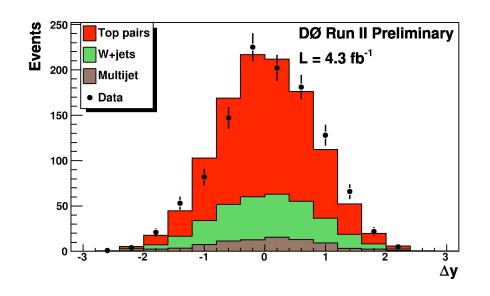

- SM predicts a small asymmetry
 - > ~ 0.01±0.02
- Earlier D0 measurement gave an interesting value (0.9 fb⁻¹)

 $A_{fb} = 0.12 \pm 0.08(stat) \pm 0.01(syst)$

D0 and CDF have reported new measurements

 Idea is to fully reconstruct lepton+jets events

- Then work hard to measure systematic effects
- Use 4.3 fb⁻¹, and select:
 - lepton+jet events
 - > B-tag one of the 4 leading jets
 - Find best kinematic reconstruction to measure rapidity



A_{fb} **Results**

D0 observes 1137 events

- Expect 808±37 from ttbar
- Fit Dy distribution to templates
 - Signal from MC@NLO
 - Background primarily from data W
 +jets where anti-lepton cuts applied

$$A_{fb} = 0.08 \pm 0.04(stat) \pm 0.01(syst)$$

Systematic uncertainties small

- Primarily W+jets asymmetry (+0.006)
- Interesting result as it still suggests larger asymmetry than predicted
- What makes this even more interesting is that CDF also has a larger asymmetry (5.3 fb⁻¹)

$$A_{fb} = 0.150 \pm 0.050(stat) \pm 0.024(syst)$$
$$A_{fb}^{pred} = 0.050 \pm 0.015$$

Update to Higgs Search

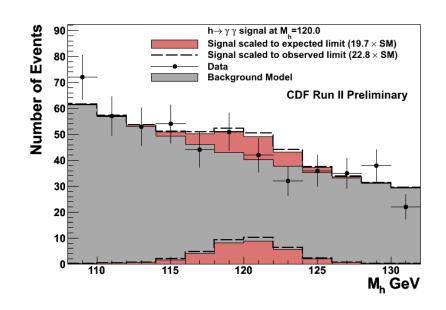
Not a "new" analysis

However, opposite challenge:

 Sensitivity comes from many channels being combined

Latest results add

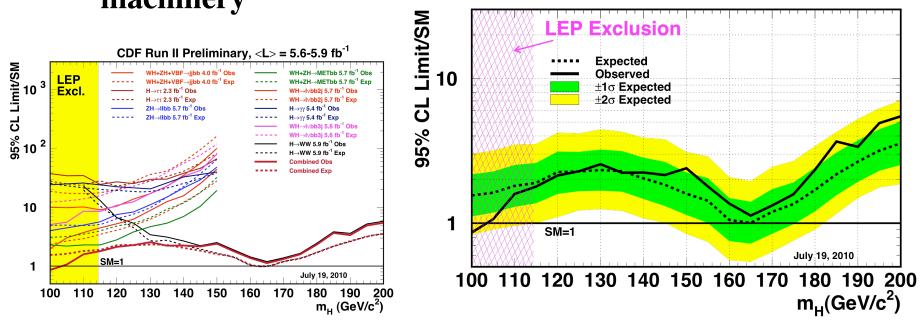
- ≻ H → γγ, (CDF)
- > H→W+W-→lvqq (D0)
- More luminosity


Why not γγ before?

- > Very low rate
- Backgrounds thought to be insuperable

OK mass resolution: 3 GeV/c²

Challenge is background

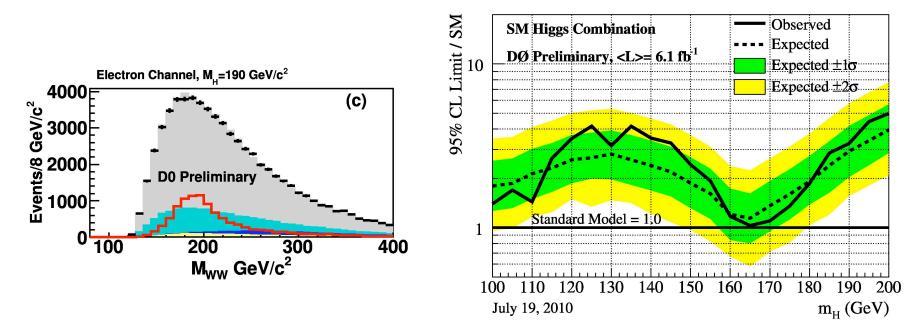

Combine CDF Channels

Perform a combined channel analysis Essentially identical to single top machinery

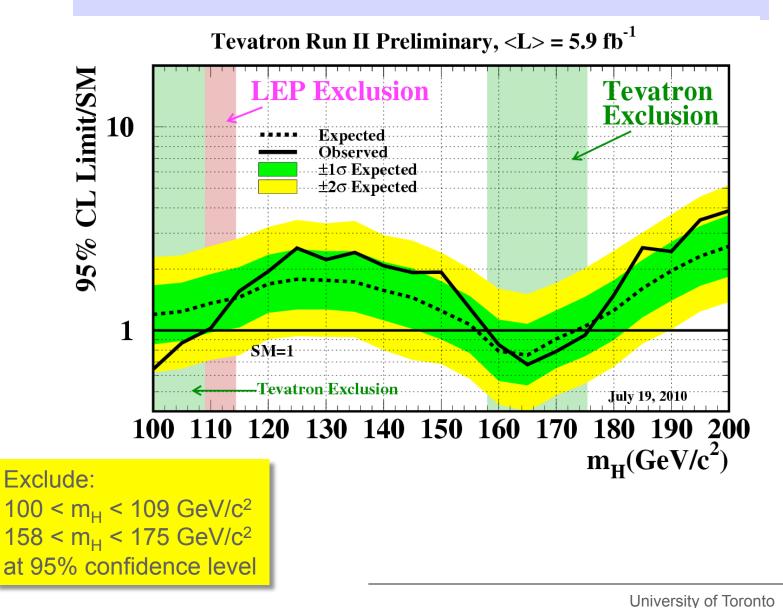
Limit is incremental improvement

CDF Run II Preliminary, $\langle L \rangle = 5.6-5.9 \text{ fb}^{-1}$

No evidence!


Combine D0 Channels

Perform a combined channel analysis


• Somewhat more channels -- 73

Limit is incremental improvement

No evidence!

Tevatron Higgs Limit

Conclusions

- First measurement of jet mass and substructure for high p_T jets
 - Confronted by data forces one to understand systematics
 - Multiple interaction corrections
 - Calibration of mass scale
 - Allows for test of QCD predictions:
 - > Jet mass, substructure
- First attempt at boosted top detection
- Top production asymmetry plot thickens

Higgs search progresses

 Exclusion region for SM Higgs growing

• Expect improvements from

- Integrated luminosity
- Analysis innovations

Lessons for LHC?

• Think "simple"

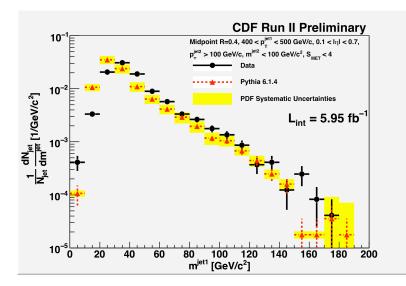
➤ ... and data-driven

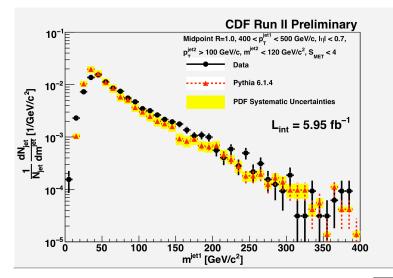
• Coherent analysis efforts

- Higgs search involves >100 collaborators
- Right balance of "internal competition" and collegiality

BACKUP SLIDES

MI/UE Corrections


- Looked at how to make MI correction in a variety of ways
 - Looked at mass corrections event-by-event
 - But statistical fluctuations large, event-to-event
 - Chose to develop a parametrized correction
- Note that:


$$\delta m^{jet} \simeq \frac{E_{tower} E_{jet} \Delta R}{m^{jet}}$$

Expect MI correction to scale with R⁴:

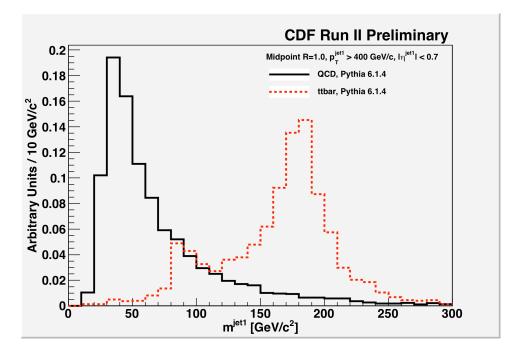
- Exactly what we see when comparing R=0.4 and R=0.7
- PYTHIA UE agrees well with data – same UE mass correction
- Use that to scale corrections for R=1.0
 - Method doesn't work with larger cone because of overlap

Jet Mass: Data vs PYTHIA

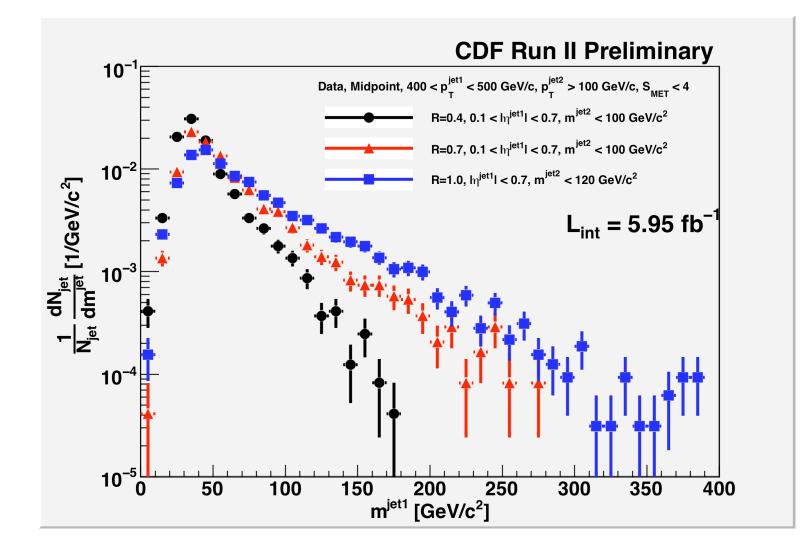
Internal Jet Energy Scale

Overall jet energy scale known to 3%

- The relative energy scale between rings known to 10-20%, depending on ring
- Use this to constrain how far energy scale can shift
- Do first for m^{jet} ~ 60 GeV/c² use average jet profile
 - Extract from that a limit on how much "Ring 1" energy scale can be off - ± 6%
 - Then do the same for mjet ~ 120 GeV/c²


Resulting systematic uncertainty is 9.6 GeV/c²

- Conservative estimate used a very broad energy profile
 - No localized substructure assumed
- Take this as systematic uncertainty
 - Could constrain it better using single particle response
 - Note that fixed cone size is an advantage here


Reconstruction of Top

Leading jet in ttbar events has clear top mass peak

- All events between 70 and 210 GeV/c² for R=1.0
- See clear W peak
 - B quark jet presumably nearby in those cases
- Clear that higher mass cut gives greater QCD rejection
- Much optimization to do
- B tagging not yet used
 - Now investigating what its impact will be
 - Will need to assess efficiencies and mis-tagging rates

Comparison of Cone Sizes

