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Goals of this Talk

  CDF II now has ~8 fb-1
o  Starting to explore 

kinematic boundaries
o Working with multiple 

interactions (3-4/
crossing)

  LHC-like conditions for 
LLHC ~ 5x1030 cm-2s-1 

o Have comparable 
number of multiple 
interactions

  Focus on a couple of 
“new” analyses
o Massive, boosted objects

  Study QCD predictions for 
jet mass for pT > 400 GeV/c

  Measure substructure
–  Angularity
–  Planar flow

o Boosted top search
  Use high pT jet sample

o Latest Higgs search 
  Additional channels and 

statistics

University of Toronto 
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Integrated Luminosity is Key

University of Toronto 
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Boosted Study Motivation

  Mass of high-pT jets important �
property, but only theory studies
o  High mass: QCD at NLO predicts jet mass  

(eg., Ellis et al, 0712.2447,  Alemeida, et al. 0810.0934)
o  Such jets form significant background �

to new physics signals
  Examples: high pT tops, Higgs, neutralino … 

  Focus on jets with pT>400 GeV/c
o  CDF II 3-4 thousand jet candidates
o  Reporting first systematic study of �

substructure
o  First look for boosted top quarks

Ellis et al., 0712.2447 (2007). 

CDF Collaboration, PRD 78, 052006 (2008) 
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Boosted Objects at Tevatron

  SM sources for high-pT 
objects calculable
o  Dominated by light quarks 

& gluons 
o  Mostly qq/qg final states

  However, do expect 
other contributions
o  Fraction of top quarks 

~1.5% for pT>400 GeV/c
  Total rate 4.45±0.5 fb 

(Kidonakis & Vogt)

o  Expect W/Z production of 
similar order

University of Toronto 

Kidonakis & Vogt, PRD 68, 114014 (2003)  

PYTHIA 6.4 Calculation 
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Strategy for Analysis

  Select high pT jets in CDF�
central calorimeter
o  Use tower segmentation to measure�

jet mass
  Calibrate with tracking information

o  Employ standard “e-scheme” for �
mass calculation
  Each tower is a particle with m = 0
  Four vector sum gives (E,px,py,pz)
  Have ~50 towers in R=0.7 jet

  Employ Midpoint cone jets
o  Best understood in CDF II context
o  However, not fully IR-safe

University of Toronto 

N.B. CDF central 
towers are  
Δη x Δφ ~ 0.11 x 0.26 
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Data Selection

  Analyzed inclusive jet sample
o  Trigger requires ET>100 GeV
o   Fully efficient for ET>130 GeV

  Selected data with focus on 
high pT objects
o  Kept any event with

  Jet with pT>300 GeV/c �
and |η|<0.7

  Use cones of R=0.4, 0.7 �
and 1.0

  Processed 76M events
o  Selected subsample with 

  pT>400 GeV/c
  |η| ∈ (0.1,0.7)

  Performed �
cleaning cuts
o  Event vertex, jet quality �

and loose SMET (< 14)

  Resulted in 3621 events�
using jets with R=0.7
o  3136 events with R=0.4

University of Toronto 

SMET ≡
ET

MISS

ET
i

i towers
∑
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Jet Mass Corrections

  Corrected jet mass using �
standard jet corrections
o  Further correction needed for �

multiple interactions (MI)
o  Use Nvtx=1 and Nvtx>1 events �

to determine MI

  Investigated numerous effects:
o  Cluster merging
o  Effect of calorimeter inhomogeneity at η=0

  Varied pseudorapidity window – no significant changes in mass

o  Calorimeter segmentation and jet recombination
  Varied position of towers (especially azimuth) and corrections for geometry

o  Jet mass and substructure resolution/systematics
  Detailed study of tracking/calorimeter response in data and MC/detector simulation

University of Toronto 

CDF Collaboration, NIM A  566, 375 (2006) 
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MI and UE Corrections

  Additional contributions from
o  Underlying Event (UE)
o  Multiple Interactions (MI)

  Average # interactions ~3

o  Corrected for MI

  Looked at purely dijet events
o  Defined cones (same size as jet) at 90o in 

azimuth (same η)
o  Took towers in cones, �

and added to jet in event
  Mass shift, on average, same shift 

coming from UE and MI

  Separately measure Nvtx=1 events
o  Gives UE correction separately

University of Toronto 

Correction 
scales as R4 
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Inter-Jet Energy Calibration

  Jet mass arises from 
deposition of varying energy 
per tower
o  Performed study to compare 

momentum flow vs calorimeter 
energy internal to jet
  Defined 3 rings and compared 

observed pT/ET with simulation

  Resulted in constraints on 
calorimeter relative response
o  At mjet=60 GeV/c2, σm=1 GeV/c2

o  At mjet=120 GeV/c2, σm=9.6 GeV/c2

  Largest source of systematic 
uncertainty

University of Toronto 
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Systematics on mjet

  Sources of systematics:
o  Calorimeter energy scale

  Varies from 1 to 9.6 GeV/c2 for 
65 to 120 GeV/c2 mass jets

o  UE and MI modelling
  Estimate 2 GeV/c2 based on 

uncertainty in high mass 
correction

o  Recombination scheme & 
calorimeter segmentation
  Estimate 2.2 GeV/c2 based on 

comparison of offline and 
ntuple results

o  PDF Uncertainties
  Used standard 20 eigenvector 

decomposition to assess MC 
uncertainties

  Believes uncertainties on data 
are uncorrelated
o  Combined in quadrature, gives 

total jet mass uncertainty of 
  3.4 GeV/c2 for mjet = 60 GeV/c2

  10.5 GeV/c2 for mjet > 100 GeV/c2

  Effects jet mass distributions 
arising from bin-to-bin 
migration
o  See a small systematic shift in 

other substructure variables
o  More detailed investigation 

underway

University of Toronto 
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Reducing Top Contamination

  Expect about 2.2 fb of high pT jets 
from top in sample
o  Eliminate by rejecting events with

  mjet2 > 100 GeV/c2

  Missing ET Significance (SMET) > 4
o  Use jet cone of R=1.0 for �

improving top jet tagging
  See clear peak in MC for �

second jet mass
o  Lose 29% of jet candidates

  2576 events using R=0.7 jets
  145 events with jet pT > 500 GeV/c

  After top-rejection, �
expect ~0.5 fb of top jets
o  Comparable rates for W/Z jets

University of Toronto 
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Focus on QCD Behaviour

  After top rejection
o  Left with sample dominated 

by light quarks and gluon
o  Compare high mass region 

with QCD theory
o  General structure:

  Low mass peak ~ 30-40 GeV/c2

  Long high-mass tail

University of Toronto 

  Low-mass peak arises from non-
perturbative QCD effects
o  Challenge to understand – 

nonperturbative effects & 
resolution

o  High mass tail predicted by 
NLO QCD
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Comparison with PYTHIA

  PYTHIA 6.1.4
o  Standard CDF II 

QCD sample
o  PDF uncertainties 

based on 
eigenvector 
decomposition

  Agreement “OK”
o  PYTHIA Low-

mass peak few 
GeV/c2 lower

o  Systematic 
underestimate at 
higher masses

University of Toronto 
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Jet Mass Compared with QCD

  Make a direct comparison with 
QCD theory
o  Good agreement with data and 

QCD theory prediction
  Data interpolates between quark 

and gluon predictions
o  Also agreement with PYTHIA 

MC calculation

  Important point:
o  Agreement in both rate and 

shape of distribution
o  Cone size dependence correctly 

predicted

University of Toronto 
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Angularity

  Angularity is defined as

o  Emphasizes cone-edge radiation
o  For large mjet, have analytic �

approximation (peaks at low value�
with large tails)

  Expected to behave like 1/τ within a �
specific region

o  Start to see difference in data and�
QCD predictions

  See fewer jets at low angularity
  On average, more “spherical” jets

University of Toronto 

τ a R, pT ,MJ( )a<2 =
1
MJ

ω i
i∈jet
∑ sinaθi 1− cosθi[ ]1−a

(Berger et al. ph/0303051;  
Almeida et al., 0807.0234) 

τ a ~
ω i

M J

θi
2−a

i∈R∑ =
ω i

M J
i∈R∑ θi

4
a=−2
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Planar Flow

  Planar flow 
complementary 
substructure variable
o  Large Pf -> more planar 

energy distribution
o  Predicted to provide 

separation between QCD 
and top

  Definition:
o wi energy of particle I

o  λ1, λ2 are eigenvalues University of Toronto 

  Data prefers somewhat more 
aplanar configuration than 
QCD
o  PYTHIA differs significantly – 

data more “top-like”

Iw
kl =

1
m jet

pi,k
wii

∑
pi,l
wi

Pf ≡
4λ1λ2
λ1 + λ2( )2
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Jet Mass vs Cone Size

  Comparison of 
cone sizes
o  Expect cone size to 

have an effect on how 
large-angle radiation 
is included

o  These agree with 
PYTHIA predictions 
(see backup slides)

University of Toronto 



19

Strategy for Detecting Top

  Keep selection simple
o  Focus on two separate channels

  All Hadronic Top
o  Require SMET < 4 
o  Require 2 jets with �

140 < mjet < 210 GeV/c2

o  Estimate background using 
“ABCD” technique

  Semi-leptonic top
o  Require 4 > SMET > 10 
o  Require 1 jet with �

140 < mjet < 210 GeV/c2

o  Estimate background using 
“ABCD” technique

University of Toronto 
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mjet2 vs mjet1 for Top MC

University of Toronto 
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mjet2 vs mjet1 for QCD MC

University of Toronto 
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Best “Simple” Counting of 1+1

  With R=1.0 cones, mjet1 and 
mjet2 are equally powerful
o  Use jet mass (140,210) GeV/c2 

to define ttbar candidates
o  Expect 3.5±0.5 top quark 

events to populate this region

University of Toronto 

  Employ data to estimate 
backgrounds
o  Define mass windows �

mjet ∈(140,210) GeV/c2�

mjet ∈(30,50) GeV/c2 
o  Use fact that mjet 

distributions uncorrelated 
for background

o  Signal is region D
o  In “1+1” sample, predict 

31±5 (stat) bkgd events
o  Observe ND=61 events

A
B

C

D

N Pr ed
D = NC (NB / NA )
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Best “Simple” Counting for SL

  In case of recoil semileptonic 
top, use mjet1 and SMET

o  Assumption is the SMET and 
mjet1 are uncorrelated

o  Expect 2.3±0.3 top quark 
events to populate this region

University of Toronto 

  Employ data to estimate 
backgrounds
o  Use regions mjet1 ∈(30,50) & 

(140,210) GeV/c2

o  SMET ∈ (2,3) & SMET∈ (4,10) 
o  In “SL” sample, predict 

45±7 bkgd events
o  Observe ND=42 events
o  About a -0.4 σ deficit!

A B

C

D

N Pr ed
D = NC (NB / NA )
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Uncertainties

  Background uncertainty 
(±11 GeV/c2 jet mass scale)
o  Shift window up/down
o  -26% and +34%

  Uncertainties on top 
efficiency (SM production)
o  Primarily jet energy scale of 

±3% -> 24.5%

  Background statistics
o  11.1% from counting

  Luminosity (±6%)

  MC mtop (±2 GeV/c2)
o  Shift window -> 0.3% change

  Overall uncertainties 
added in quadrature
o  -38% and + 44%

  Incorporated into 
upper limit 
calculation

  Use frequentist 
method
o Marginalize nuisance 

parameters

University of Toronto 
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Top Quark Cross Section Limit

  Assume we observe signal + 
background
o  Set upper limit on SM 

production σ for top quark �
pT > 400 GeV/c

  Observe 103 events with 76+/-9 
background
o  Calculate 95% CL upper limit 

using CLs method
  Systematic uncertainties incorporated 

in same way as Higgs search
  NLIM = 69.3 events

o  Efficiency from MC
  553 & 343 ttbar expected in 2 

channels (out of 4041)
  Efficiency = 0.212

  Upper limit on cross section 
for pT>400 GeV/c

  Compare with other limits 
(using specific Z’ models):
o  ~600 fb in l+jets (0.96 fb-1)
o  ~200 fb in all-hadronic (2.8 fb-1)

University of Toronto 

σ 95%CL =
NLIM

L dt ε∫
=

69.3
(5.95)(0.212)

= 54 fb
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Top Quark Production Asymmetry

  D0 has made studies of the 
production asymmetry

o  SM predicts a small asymmetry 
  ~ 0.01±0.02

o  Earlier D0 measurement gave an 
interesting value (0.9 fb-1)

  D0 and CDF have 
reported new 
measurements

  Idea is to fully reconstruct 
lepton+jets events 
o  Then work hard to measure 

systematic effects
o  Use 4.3 fb-1, and select: 

  lepton+jet events
  B-tag one of the 4 leading jets
  Find best kinematic reconstruction to 

measure rapidity

University of Toronto 

Afb ≡
N Δy>0 − N Δy<0

N Δy>0 + N Δy<0

Afb = 0.12 ± 0.08(stat) ± 0.01(syst)
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Afb Results

  D0 observes 1137 events
o  Expect 808±37 from ttbar
o  Fit Dy distribution to templates

  Signal from MC@NLO
  Background primarily from data – W

+jets where anti-lepton cuts applied

  Systematic uncertainties small
o  Primarily W+jets �

asymmetry (+0.006)
o  Interesting result as it still 

suggests larger asymmetry than 
predicted

  What makes this even more 
interesting is that CDF also has a 
larger asymmetry (5.3 fb-1)

University of Toronto 

Afb = 0.08 ± 0.04(stat) ± 0.01(syst)

Afb = 0.150 ± 0.050(stat) ± 0.024(syst)

Afb
pred = 0.050 ± 0.015
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Update to Higgs Search

  Not a “new” analysis
o However, opposite 

challenge:
  Sensitivity comes from 

many channels being 
combined

o Latest results add
  H → γγ, (CDF)
 Η→W+W-→lνqq (D0)
  More luminosity

o Why not γγ before?
  Very low rate
  Backgrounds thought to be 

insuperable

  OK mass �
resolution: �
3 GeV/c2

  Challenge is background

University of Toronto 
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Combine CDF Channels

  Perform a combined 
channel analysis
o Essentially identical 

to single top 
machinery

University of Toronto 

  Limit is incremental 
improvement
  No evidence!
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Combine D0 Channels

  Perform a combined 
channel analysis
o  Somewhat more 

channels -- 73

University of Toronto 

  Limit is incremental 
improvement
  No evidence!
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Tevatron Higgs Limit

University of Toronto 

Exclude: 
100 < mH < 109 GeV/c2 

158 < mH < 175 GeV/c2 

at 95% confidence level 
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Conclusions

  First measurement of jet 
mass and substructure for 
high pT jets
o  Confronted by data forces one 

to understand systematics
  Multiple interaction corrections
  Calibration of mass scale

o  Allows for test of QCD 
predictions:
  Jet mass, substructure

  First attempt at boosted 
top detection

  Top production 
asymmetry plot thickens

  Higgs search progresses
o  Exclusion region for SM Higgs 

growing
o  Expect improvements from

  Integrated luminosity
  Analysis innovations

  Lessons for LHC?
o Think “simple”

  … and data-driven

o Coherent analysis efforts
  Higgs search involves >100 

collaborators
  Right balance of “internal 

competition” and collegiality
University of Toronto 
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BACKUP SLIDES 
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MI/UE Corrections

  Looked at how to make MI 
correction in a variety of 
ways
o  Looked at mass corrections 

event-by-event
o  But statistical fluctuations 

large, event-to-event
o  Chose to develop a 

parametrized correction

  Note that:

University of Toronto 

δm jet

EtowerEjetΔR

m jet

  Expect MI correction to scale 
with R4:
o  Exactly what we see when 

comparing R=0.4 and R=0.7

  PYTHIA UE agrees well with 
data – same UE mass 
correction

  Use that to  scale corrections 
for R=1.0
o  Method doesn’t work with 

larger cone because of overlap
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Jet Mass:  Data vs PYTHIA

University of Toronto 
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Internal Jet Energy Scale

  Overall jet energy scale 
known to 3%
o  The relative energy scale 

between rings known to 
10-20%, depending on ring

o  Use this to constrain how far 
energy scale can shift

  Do first for mjet ~ 60 GeV/c2 – 
use average jet profile
o  Extract from that a limit on 

how much “Ring 1” energy 
scale can be off - ± 6%

o  Then do the same for mjet ~ 
120 GeV/c2

University of Toronto 

  Resulting systematic 
uncertainty is 9.6 GeV/c2

o  Conservative estimate – used a 
very broad energy profile

  No localized substructure 
assumed

  Take this as systematic 
uncertainty
o  Could constrain it better using 

single particle response

o  Note that fixed cone size is an 
advantage here
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Reconstruction of Top

  Leading jet in ttbar events 
has clear top mass peak
o  All events between 70 and 210 

GeV/c2 for R=1.0
o  See clear W peak

  B quark jet presumably nearby in 
those cases

o  Clear that higher mass cut gives 
greater QCD rejection

o  Much optimization to do

  B tagging not yet used
o  Now investigating what its 

impact will be
o  Will need to assess efficiencies 

and mis-tagging rates

University of Toronto 
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Comparison of Cone Sizes

University of Toronto 


