


Kubernetes Operators
as composable parts of the new Drupal SaaS

Konstantinos Samaras-Tsakiris
IT-CDA-WF

White Area talk



Coalescing Web Frameworks on K8s



Unique infrastructure per use case

PaaS Openshift 3 (Kubernetes)

WebEOS VMs with custom config

Drupal Physical machines with custom config

Low reuse of components



Converging on a cloud native platform

PaaS Openshift 4

WebEOS Openshift 4

Drupal Openshift 4

Many shared components



Platform components

Common pattern: Operator



Drupal @ CERN



Drupal @ CERN

Drupal expert

Physicists

Comms expert

Administration

Not just hosting, but fully managed 
Software as a Service

Upgrades
Failure recovery

Custom 
modules & 

themes

Reliable 
hosting

CERN
Drupal Distribution



Parts of a Drupal site



Drupal SaaS is tough

➢ Take 1500 instances of a complicated thing

➢ Automate business/operational logic

➢ Let users self-provision websites

➢ All this with a very small team!



Drupal sites on K8s



Kubernetes

“Container orchestrator”

- not a workflow engine
- set of independent, composable control processes
- continuously drive the current state towards the provided desired state

API resources

Ref: kubernetes.io/docs/concepts/overview/what-is-kubernetes/

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/








Operator Pattern











Making operators

k8s event queue

Reconcile logic

Reconcile loop

k8s API server client

Watch
● Fetch CR
● Check State
● Ensure State
● Update Status



Diving into our operators



The DrupalSite operator



The DrupalSite operator



Operator Capabilities

Where we 
are now

Our Goal

Ref: https://sdk.operatorframework.io/docs/overview/



Composing Operators

Not only DrupalSites need to integrate with external services

➢ CRDs make operators composable



Demo: Upgrading Drupal sites



Update workflow

Roll out new images

Update DB schema

Rollback update

Continue reconciliation

Disable site maintenance

Failed

Enable site maintenance

Report in Status

Take DB snapshot

Failed



What have we discovered?



Development practices

● GitOps
○ Cluster configuration with Helm charts

○ Maintain with ArgoCD Applications

○ Validation with e2e tests

● Auto-provisioning development clusters
○ Almost same configuration as production clusters

● Operator Framework
○ Kubebuilder book



Conclusions

● We can provision a highly automated infrastructure
to solve a complex problem with a very small team → 

➢ gitlab.cern.ch/drupal/paas/drupalsite-operator

● We used the operator model as a critical part of our design.

● Kubernetes as a common API to control many kinds of resources.

https://gitlab.cern.ch/drupal/paas/drupalsite-operator/



