The double phase argon LEM-TPC

Devis Lussi,

Andreas Badertscher, Alessandro Curioni, Lukas Epprecht, Leo Knecht, Gustav Natterer, Filippo Resnati, André Rubbia, Thierry Viant

Institute for Particle Physics, ETH Zurich

6th RD51 Collaboration Meeting: 7.-10. October 2010

1

Liquid argon (LAr)

Basic properties of liquid argon

density	1.4 g/cm ³
boiling point @1 atm	87.3 K
triple point	0.689 bar / 83.8 K
<de dx=""> (MIP)</de>	2.1 MeV/cm
radiation length	14.0 cm
Molière radius	9.25 cm
nuclear interaction length	83.6 cm
W _{ion} (1 MeV e-)	23.6 eV
Wphoton (1 MeV e-)	19.5 eV

- High scintillation yield at 128 nm
 - ➡ light can be used as trigger
- No electron attachment
 - ➡ charge transport in LAr possible
 - ➡ Ultra high purity required!
- Drift velocity = 2 mm/ μ s with E=1 kV/cm
- small diffusion ($\sigma \approx mm$ after several m of drift)
- moreover: argon is available and cheap

Feasibility of large liquid argon Time Projection Chambers (LAr-TPC)

Physics applications

	Argon Dark Matter search (ArDM)	Giant LAr TPC (GLACIER)
physics program	Direct detection of WIMPs (coherent elastic scattering)	neutrino physics (CP violation) and proton decay
fiducial mass	1 ton	100 kilotons
challenge	low threshold for detection of nuclear recoils: 30 keVr	 20 m drift (losses due to diffusion and impurities) large area
required gain	≈1000	≈10

ArDM light readout: (14 PMTs)

A. Rubbia, J.Phys. Conf. Ser. 39 (2004) 129

A. Rubbia, arXiv:hep-ph/0402110, 2003

The double phase Ar LEM-TPC

A double phase pure argon LEM-TPC is a complete tracking and calorimetric device, capable of charge multiplication.

recent publications

- •A. Badertscher et al., arXiv:0811.3384, 2008
- •A. Badertscher et al., Nucl. Instrum. Meth. A617:188-192, 2010

working principle

- 1. Charge produced by an ionizing event.
- 2. Primary scintillation light (VUV) detected with TPB coated PMT (to of the event)
- 3. Electric field of about 500 V/cm drifts ionization electrons up to the liquid-vapor interface.
- 4. Extraction into the vapor phase (>2500 V/cm needed for fast and efficient extraction)
- 5. Electron avalanche in GAr due to high electric fields produced in the holes of a LEM (Large Electron Multiplier)
- 6. Charge induces signals on the projective 2D anode.

The Large Electron Multiplier

LEM/THGEM characteristics:

mechanically robust (possibility to cover large areas)

can withstand cryogenic temperatureshigh discharge resistivity

Production (CERN PCB workshop):

copper electrodes gold plated
dielectric rims perfectly centered due to mask less etching technique

design parameters

total area	10x10 cm ²
PCB thickness	1.0 mm
hole diameter	500 µm
hole pitch	800 µm
dielectric rim	30-40 μm

The two-dimensional projective anode

The amplified charge is collected on 2 sets of orthogonal strips:

- Position reconstruction (3 mm pitch)
- x- and y-view signals symmetric

charge sharing & design parameters:

	total area	10x10 cm ²
	readout pitch	3 mm
50% - 50%	strip pitch	600 µm
	upper strip width	120 µm
	lower strip width	500 µm
	kapton thickness	50 µm

Produced by the PCB workshop

Test setup located at CERN

LAr purification cartridge

GAr purification system

DAQ system

TM pump

detector vessel

open LAr bath

Argon purification

1. Cool down phase:

- detector filled with GAr
- Metal bellows pump pushes GAr through a SAES getter
- impurities due to cold leaks and outgassing are removed.

2. Filling:

 Oxygen in LAr is removed by a custom made copper cartridge at the input of the detector.

3. Gas recirculation:

- Heating resistors evaporate LAr.
- A metal bellows pump pushes GAr through a commercial getter (speed ≈ 1 volume / 48 h).
- The pure GAr condensates in the detector volume.

best purity achieved: $[O_2]_{eq}$ <0.6 ppb

The LEM-TPC

2D anode test in double phase operation

- Run Description: First test of a single 1 mm thick LEM with a the 2D projective anode.
- filling: liquefaction of purified GAr (SAES getter, <0.1 ppb)
- operation: pure LAr kept at 87 K with external open LAr bath

Cosmic muon events: signal and event display:

Free electron lifetime

Effect of electronegative impurities (O₂, H₂O and CO₂) on the free electron lifetime

$\tau_{e^{-}} \approx 300 \ \mu s \ ppb/[O_2]$

Impurities are uniformly distributed in the active volume => the collected charge is given by

$Q(t)=Q_0 e^{-t/\tau}$

dQ/dx: ionization loss per unit length of cosmic muons is used to obtain the free electron lifetime

dQ/dx reconstruction of linear tracks:

- dQ≈∆Q= charge collected on each strip of the anode
- dx (corresponding ionization length) given by 3D track reconstruction

Charge sharing between x- and y-view

The amplified charge is collected either on the x- or the y-view:

- ideal case: one to one charge sharing => maximum S/N ratio for both views
- ratio depends on the strip geometry => important design parameter of the anode Selected long muon tracks were used to investigate the charge sharing between the two views.

(x-y)/(2(x+y)) less than $\approx 5\%$:

Extraction field scan

The typical extraction field is bigger than 2500 V/cm

With lower fields (1000 V/cm) the extraction time increases: ➡ The charge is smeared out in time. (loss of track resolution) The amount of charge decreases due to attachment to electronegative impurities in LAr.

Field configuration

LEM-Anode	3000 V/cm
LEM	30 kV/cm
grid-LEM	1500 V/cm
extraction	1000 V/cm
drift	500 V/cm

time (us)

LEM field scan

After applying the free electron lifetime correction factor, the dQ/dx distributions of reconstructed long cosmic muon tracks can be fitted with a Gauss-convoluted Landau distribution.

The effective gain is defined as the ratio of the collected charge (x and y view) and the ionization charge produced in LAr. The average charge released by a MIP in LAr (electric field: 500 V/cm) \approx 10 fC/cm

Field configuration

LEM-Anode	3000 V/cm
LEM	30- <mark>35.5</mark> kV/cm
grid-LEM	1500 V/cm
extraction	3000 V/cm
drift	500 V/cm

Alternative charge readout: micromegas

First test of a micromegas as charge readout of a double phase argon TPC (87 K, 1 bar):

- LEM and anode replaced with micromegas (produced by the PCB workshop at CERN)
- readout: 30 strips, 3 mm wide (only one view)
- spacers: diameter=450 μm, pitch=3 mm and gap=100 μm
- mesh: wire pitch=63 μ m, wire diameter=18 μ m

Conclusions

- The projective 2D anode, 1 mm thick LEM and the micromegas were produced by the CERN PCB workshop
- Performance of the projective Anode:
 - Cosmic ray events recorded with a pitch of 3 mm and symmetric x-y readout
 - Excellent charge sharing between both views measured (design parameters verified)
- Performance of the single 1 mm thick LEM:
 - Energy loss spectrum of cosmic rays used to estimate the gain.
 - A gain in the order of 30 was reached in double phase operation mode.
- For the first time a micromegas has been used as charge readout of a LAr TPC!

Outlook:

- test of a double stage LEM in order to reach a higher gain
- further tests with the micromegas
- Production of LEM and charge readout for ArDM (1 T LAr LEM-TPC)

Backup slides

DAQ system

Custom made front-end charge preamp and shaper:

- 2 channel per chip.
- rise time 0.6 $\mu s,$ fall time 2 $\mu s.$
- gain ~11mV/fC.
- S/N ${\sim}10$ @ 1 fC and 200 pF input cap.

ETHZ in collaboration with CAEN developed a complete DAQ system:

- 12 bit 2.5 MS/s flash ADC.
- programmable FPGA.
- implementation of zero suppression
- channel-by-channel trigger and global "trigger alert"
- 256 channel crate
- chainable optical link.

Inspired by C. Boiano et al. IEEE Trans. Nucl. Sci. 52 (2004) 1931

Effect of extraction grids

The extraction grids focus the electrons between the wires. Amount of charge collected varies with the position (one dimension only).

The pattern of the grid becomes more evident increasing the field between the grid and the LEM.

