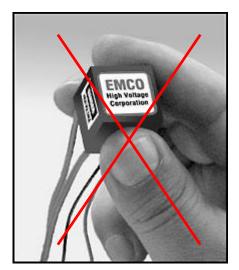


Development of miniHV at Nikhef

Small HV modules for laboratory use

Henk Boterenbrood, Harry van der Graaf, Henk Groenstege, Ruud Kluit, <u>Fred Hartjes</u> and Jaap Kuijt

> 6th RD51 Collaboration workshop Bari, 9 October 2010


Why developing HV power supplies?

• Getting a HV supply that is dedicated for gaseous detectors

- Fast trip in sub µA region
- Accurate current measurement in nA region
- Small unit, not too expensive
- Fast remote control
- Gently ramping to target voltage

 In addition, for large scale HEP experiments, one would like having these units close to the detectors in the hot region

- Non-magnetic
- Minimal mass
- Radhard
- Low noise emittance

Developing two designs

- **1. Mini HV** for use in the lab, testbeams etc
 - Practical in use, relatively small, not completely antimagnetic

But **NO** inductors, transformers

2. Micro HV for use near the detectors in a big experiment

• Very low mass, non-magnetic, radhard (until 1000 Mrad/ 10⁷ Gy)

Presently we are developing **miniHV**

Preliminary specs of miniHV, version 2

Based on prototype studies, to be updated with final version

- Output ~ -3 to -1000V @ \geq 1.8 μ A
 - Steps of -73.6 mV
- Standard negative output

• **Positive** output in principle possible using same PCBs

Ripple 2 mV p-p @ 1 μA expected

Ramping

- Completely controlled by local microprocessor
- Initially linear, followed by exponential approach to target voltage
- Linear part adjustable in units of 73.6 mV/s
- Containing probably few magnetic parts from electronics
 - But no magnetic transformers etc, so is expected to operate in magnetic field

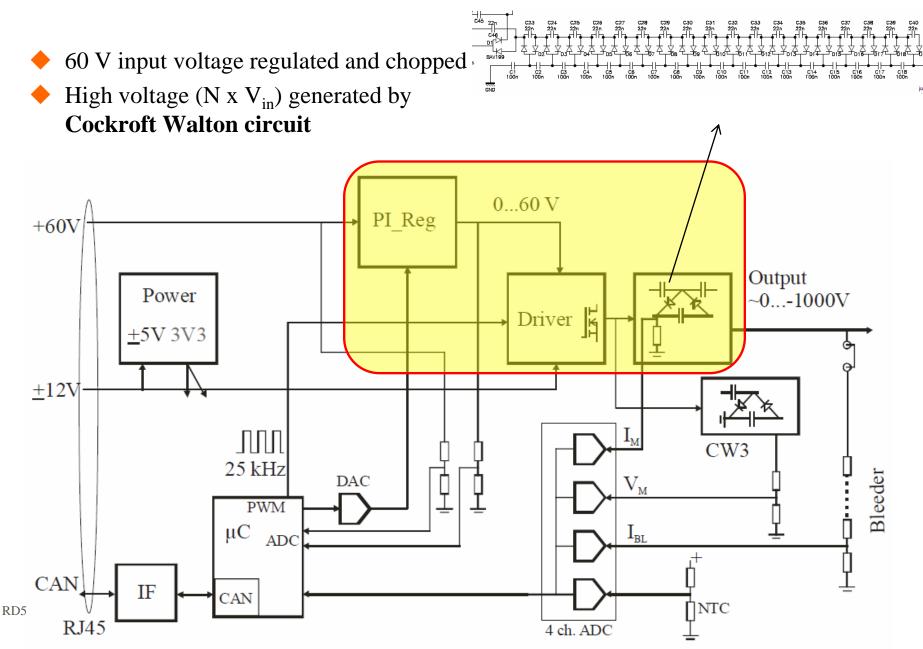
Preliminary specs of mini HV, version 2

- Current measurement by 24 bit ADC
 - => high dynamic range
- Communication by **CANopen** protocol
- Single RJ45 cable for CAN

communication and supply

- May be easily daisy chained
- Cast aluminium box 110 x 82 mm, 45 mm
 high
 - SHV out

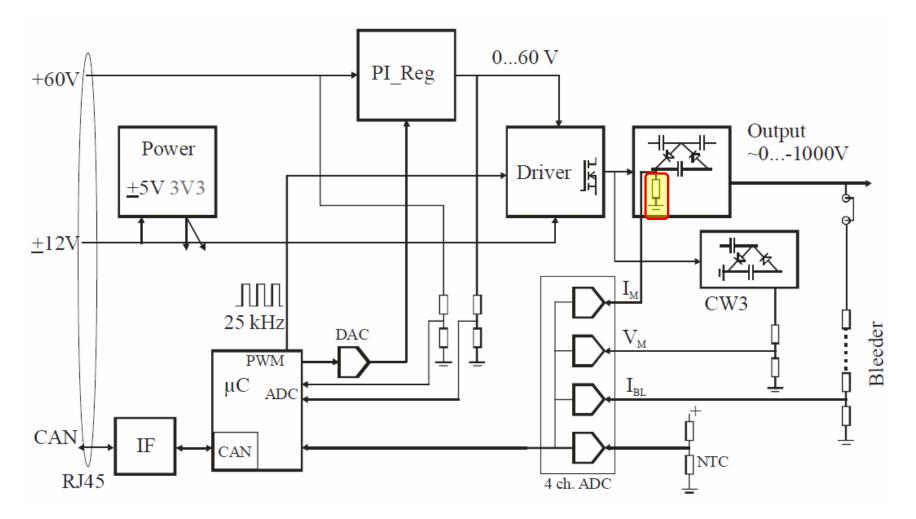
• Presently no low ohmic bleeding circuit


foreseen

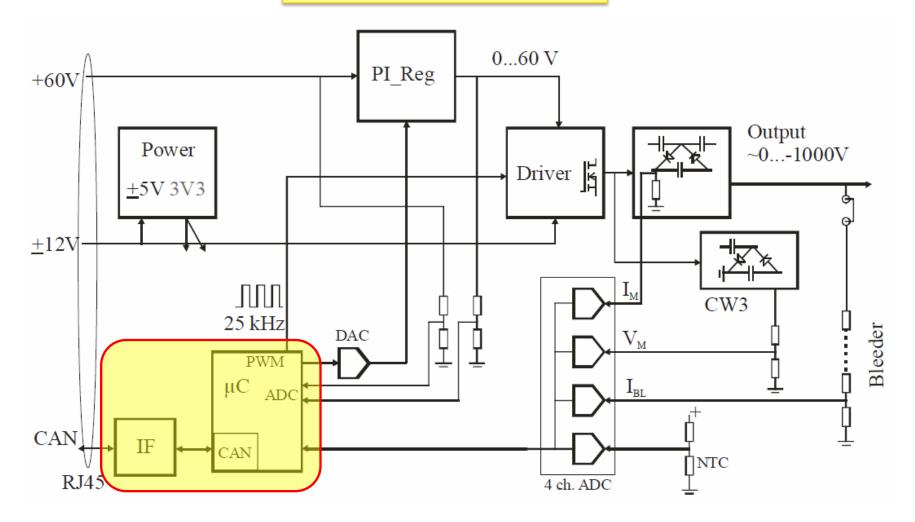
=> residual HV may remain hours after

switching off

High voltage generation

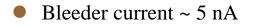

Voltage regulation

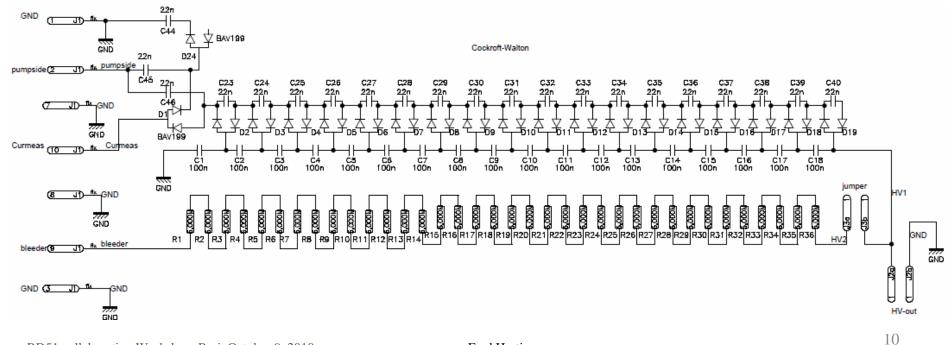
- Regulation by analogue input voltage (0 60V)
- Voltage feedback
 - Via single Cockroft Walton circuit
 - Current compensation by local microprocessor
- (Maybe via chain of 36 resistors of 5 G Ω (180 G Ω) into 100 M Ω)


Output current measurement

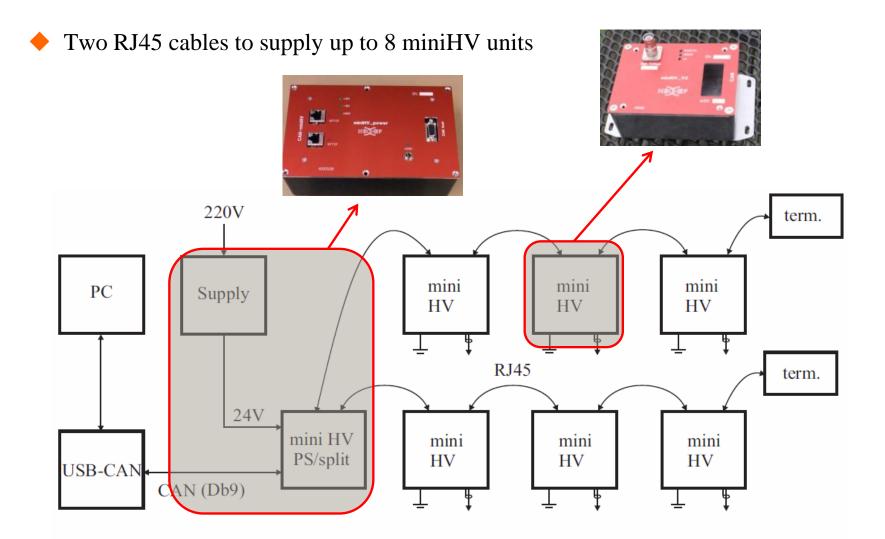
Output current measured as the return current of the Cockroft Walton circuit

Remote control


Via CANopen protocol



Cockcroft-Walton circuit


In principle no feedback at end of diode chain, only from idle diode circuit

- Regulation less direct, depending on diode characteristics
- Output capacitance ~ 5 nF
- Bleeder resistance if switched on: $36 \times 5 \text{ G}\Omega = 180 \text{ G}\Omega$

CANopen communication to multiple mini HVs

CANopen Object Dictionary prepared

MicroHV software

v0.1 3-Feb-2009

MicroHV

CANopen application software for the '*Micro' High-Voltage Powersupply Controller*

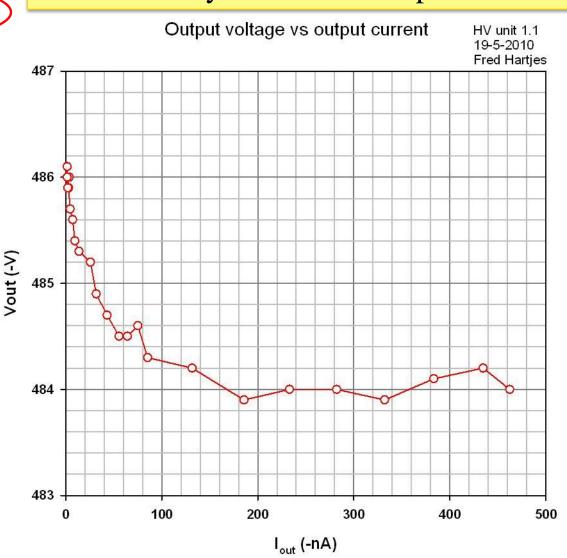
> Henk Boterenbrood NIKHEF, Amsterdam 3 February 2010

> > Version 0.1

Manufacturer-Specific Profile Area (continued)						
Index	Sub	Name	Data/	Attr	Default	Comment
(hex)	Index		Object			

2500		DAC configuration	Record			
	0	Number of entries	U8	RO	2	
*	1	SPI SCLK signal high period (opto-coupler delay)	U8	RW	10	in μ s, 10 \leq value \leq 255
*	2	Ramp speed	U16	RW	0	If != 0 ramp speed is taken into account; in DAC-counts per sec
	3	Ramping pause/continue	Bool	RW		Ramping in progress or not (read), pause/continue ramping (write)
*	4	Percentage to switch from linear to exponential ramp- ing	U8	RW	90	The percentage of the requested DAC end-value at which up- ramping (not down) switches from linear to exponential, taking the set ramp speed into account

2600		PWM configuration	Record			PWM waveforms on AT90CAN64 outputs OC3B/C
	0	Number of entries	U8	RO	4	
*	1	Start at power-up	Bool	RW	0	Start at power-up or not
*	2	Frequency	U8	RW	3	1 = 25KHz, 2 = 50KHz, 3 = 100KHz, 4 = 200KHz
*	3	Gap size	U8	RW	1	Gap between waveforms positive pulses, in units of system clock period (4 MHz, i.e. 250 ns)
	4	PWM stop/start	Bool	RW	0	PWM running or not (read), start or stop the PWM (write)


Voltage regulation for prototype version 1.1

Basically no mismatch of diode characteristics

- => output impedance zero fo currents > 150 nA
- = ~ 2V higher output voltage for currents in few nA range

Remaining inaccuracy might be cured by making simple correction in CAN processor

- Simple exponential fit
- Alternative: voltage feedback
 - By adding bleeder resistors like 5 GΩ per cascade stage
 - But resistors in GΩ range may be less stable
 - Regulation pretty slow

Version 2 may have different performance

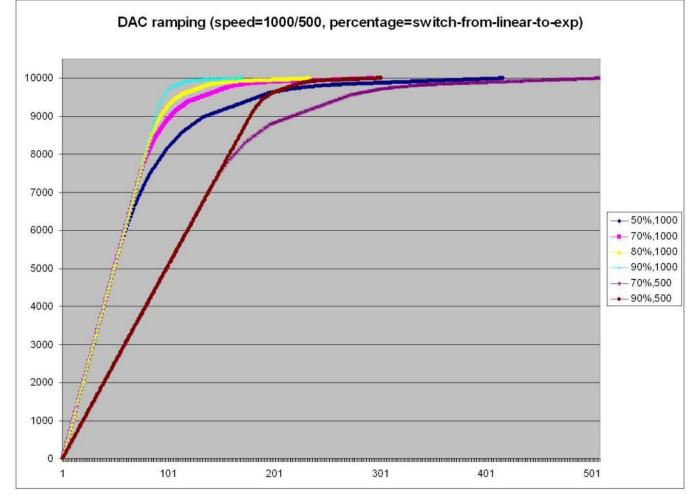
Rapid ramping possible

Measured rise time without slope adjustment ~ 100 ms (from 0 to -480V)

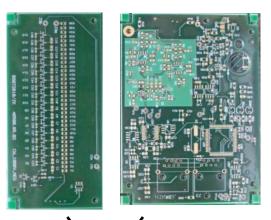
No overshoot

But normally gentle software controlled ramping will be applied

Version 2 may have different performance


Saved: 14 APR 2010 13:59:12

RD51 collaboration Workshop, Bari, October 9, 24


Simulation of smooth ramping

- Linear rise adjustable in steps of -73.6 mV/s
- Followed by exponential approach to target voltage
- Slope parameters controlled by CANopen commands
 - Linear slope
 - Start exponential part
- Presently not yet working (software bug)

Planned time schedule miniHV version 2

- \blacksquare Version 1 evaluated
 - 2 prototypes (-500 and -1000V)
 - Not suited for series production
- Version 2 being produced for 5 units
 - \blacksquare Schematic to be finished
 - ☑ Layout PCB to be made
 - Production PCB
 - Assembly PCBs (ready mid October)
 - Assembly miniHV and power units
 - Evaluation and small modifications until end 2010
 - Components including PCBs available for 25 miniHV units

MiniHV version 2 will be available for other groups in RD51

• Price not yet known


• Delivery may be spring 2011, but we cannot make promises at this stage

Send me an email if you're interested

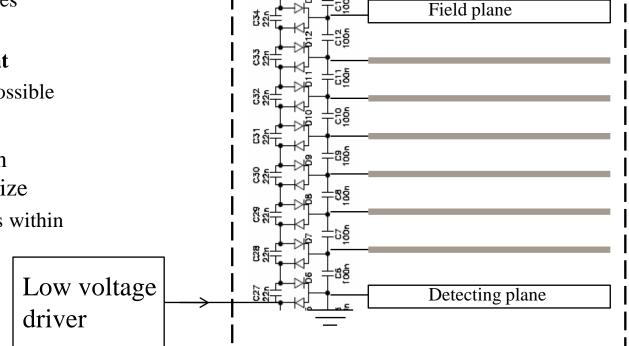
F.Hartjes@nikhef.nl

Ideas for other miniHV modules

- **1.** -2000 V version
- 2. Single MiniHV with ~ 7 outputs (-6000 V?) from Cockroft Walton circuit for triple GEM
 - Regulating GEM voltages by selecting the desired CW stage
 - steps of ~ 50V
 - But whole chain may be finely tuned
 - Advantage
 - Getting rid of voltage divider chains or multiple cascaded HV units
 - Low trip levels possible (nA region)
 - No current from voltage divider chain

Filed cage for large TPCs

- Large TPC (1 m) requires very high voltage and low driftfield gas (CF4 mixtures) Classical approach Field shaping strips to define proper drift field Field plane HV ps Substantial HV needed 50 kV or more Difficult cable and connection Voltage on field shaping strips supplied by resistor chain Detecting plane => substantial HV current => risk on HV operation
 - => no low trip level possible


Integrating Cockroft Walton technology

- Cockroft-Walton chain integrated in field cage
 - No external HV lines
 - Only LV driver
 - No bleeder current
 - Iow trip level possible
- HVs in 100 kV region relatively easy to realize
 - Everything remains within the cage structure

Need some discharge circuitry

> Relay + resistor to get rid of the residual HV after switching off

RD51 collaboration Workshop, Bari, October 9, 2010

Integrated Cockroft-Walton

Conclusions

- Mini HV version 2 (-1000V) now completely designed
 - Production bit delayed (delivery components, assembly firm)
- Evaluation of first prototypes version 2 starting mid October
- Plan starting producing series of 20 pcs in January 2011
- Possible future developments
 - More outputs and higher voltage
 - GEM grids, omitting resistor chain
 - > bit larger housing
 - Cockroft Walton integrated in field cage of drifter