

# THE TECHNOLOGY TRANSFER NETWORK FOR PARTICLE PHYSICS: STATUS ON MPGD PILOT OFFER

RD51 Collaboration Meeting, Bari, 7 October 2010

Hartmut Hillemanns, CERN

# Council approved the creation of the TT Network in March 2008

# Purpose

- Establish a genuine partnership / collaboration amongst institutes active in Particle Physics in MS with a view to enhancing Technology Transfer activities
- Develop the image of the PP community as a source of knowledge that benefits society

# Programme of work:

• 3-year project to develop tools and methods in order to support a permanent operation

# Financing

During the execution of the project, the TT
Network members will cover their own costs

\*TT Network members on September 2010, CPAN/SPAIN officially applied for full membership, KFKI, Hungary observer status

| CEA/IRFUFranceCERNCHALMERSSwedenCopenhagen UniversityDenmarkCNRS/IN2P3FranceDESYGermanyEPFLSwitzerlandGSIGermanyINFNItalyJSI Jožef Stefan InstituteSloveniaPSI Paul Scherrer InstituteSwitzerlandNational Technical University of AthensGreece |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHALMERSSwedenCopenhagen UniversityDenmarkCNRS/IN2P3FranceDESYGermanyEPFLSwitzerlandGSIGermanyINFNItalyJSI Jožef Stefan InstituteSloveniaPSI Paul Scherrer InstituteSwitzerland                                                                |
| Copenhagen UniversityDenmarkCNRS/IN2P3FranceDESYGermanyEPFLSwitzerlandGSIGermanyINFNItalyJSI Jožef Stefan InstituteSloveniaPSI Paul Scherrer InstituteSwitzerland                                                                              |
| CNRS/IN2P3FranceDESYGermanyEPFLSwitzerlandGSIGermanyINFNItalyJSI Jožef Stefan InstituteSloveniaPSI Paul Scherrer InstituteSwitzerland                                                                                                          |
| DESYGermanyEPFLSwitzerlandGSIGermanyINFNItalyJSI Jožef Stefan InstituteSloveniaPSI Paul Scherrer InstituteSwitzerland                                                                                                                          |
| EPFLSwitzerlandGSIGermanyINFNItalyJSI Jožef Stefan InstituteSloveniaPSI Paul Scherrer InstituteSwitzerland                                                                                                                                     |
| GSIGermanyINFNItalyJSI Jožef Stefan InstituteSloveniaPSI Paul Scherrer InstituteSwitzerland                                                                                                                                                    |
| INFNItalyJSI Jožef Stefan InstituteSloveniaPSI Paul Scherrer InstituteSwitzerland                                                                                                                                                              |
| JSI Jožef Stefan InstituteSloveniaPSI Paul Scherrer InstituteSwitzerland                                                                                                                                                                       |
| PSI Paul Scherrer Institute Switzerland                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                |
| National Technical University of Athens Greece                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                |
| LIP Portugal                                                                                                                                                                                                                                   |
| STFC, Scientific & Technology Facilities UK<br>Council                                                                                                                                                                                         |
| University of Sofia Bulgaria                                                                                                                                                                                                                   |



# Intellectual Property charter

• Intellectual Property policy, Knowledge and Technology Transfer policy, Collaborative and Contract research policy (while remaining compatible with open science)

## Prototype version of the TT Network website for internal use and evaluation

- Make PP technologies & expertise more visible to industry
- PP Offer: Standard presentation of technologies, service capabilities & R&D opportunities
- Successful applications in research disciplines other than PP and in industry

### Build Network corporate identity

- PP brand, concerted communication strategy, community building tools (web, training, mobility, ..)
- Development of Push/Pull mechanisms (incl. technology pooling) and Collaborative scouting
- Further exploratory actions for other possible pilots such as Si Strips sensors and Si photomultipliers

# Set-up a programme of work to address socio-economic impacts of PP



# First pilot case: Micro Pattern Gaseous Detectors

- Large collaborative R&D efforts from PP community (RD-51, more than 70 institutions involved, not only PP institutes, important interest from industry);
  - Good case to define a collaborative scouting model
- Evidence for patent pooling (GEM, micromegas, front-end readout, software, etc.)
  - Very good case for the development of a collaborative push and pull model
  - □ First data to test community building tools; specify value and meaning of a PP brand
  - Test of concerted communication strategy
- Important and very visible case currently addressed by members of the TT Network individually with a limited collaboration at the TTO level
- TT Network member institutes participating in RD-51
  - CEA, CERN, CNRS, DESY, INFN, GSI, LIP
  - NTU, KFKI (TT Network Observer)



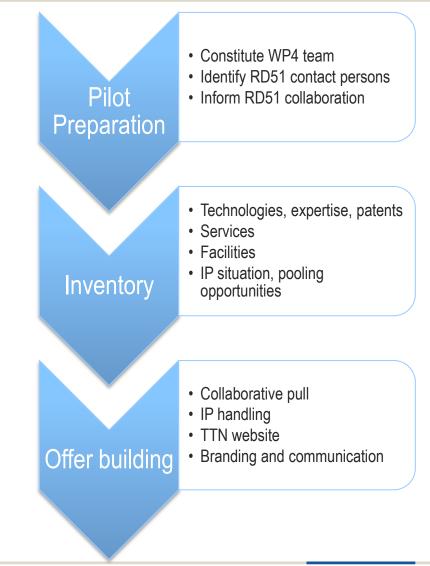
# What are the benefits for RD51 ?

# "The main objective of the R&D program is to advance technological development and application of Micro Pattern Gas Detectors." <u>http://rd51-</u>

public.web.cern.ch/RD51%2DPublic/

- Increased visibility and awareness of RD51 technologies and expertise through concerted communication and building a MPGD community brand
- →Image of an organised community:
  - → More attractive R&D offer to industry in partnership
  - → Concerted offer more attractive for industry to manufacture
- Promote and strengthen the image of RD51 as reference source for MPGD technologies
- Possibility to offer customer specific solution packages, expertise and services rather than raw technology components
- → Simplified access to RD51 technologies, patent pool and expertise
- One SPOC (single point of contact) for facilitated identification of and access to RD51 technology offer




# Achievements and To Do's

# Achievements:

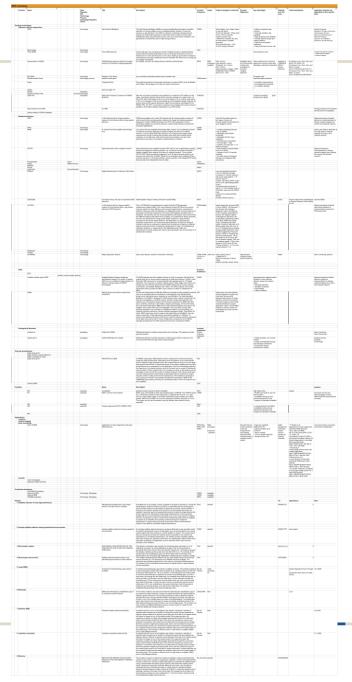
- ✓WP4 core team constituted
- ✓ RD51 collaboration informed
- ✓TTN member contact persons for RD51 identified
- ✓MPGD Inventory

# Ongoing :

- MPGD Inventory Consolidation
- MPGD Offer building
- Offer presentation

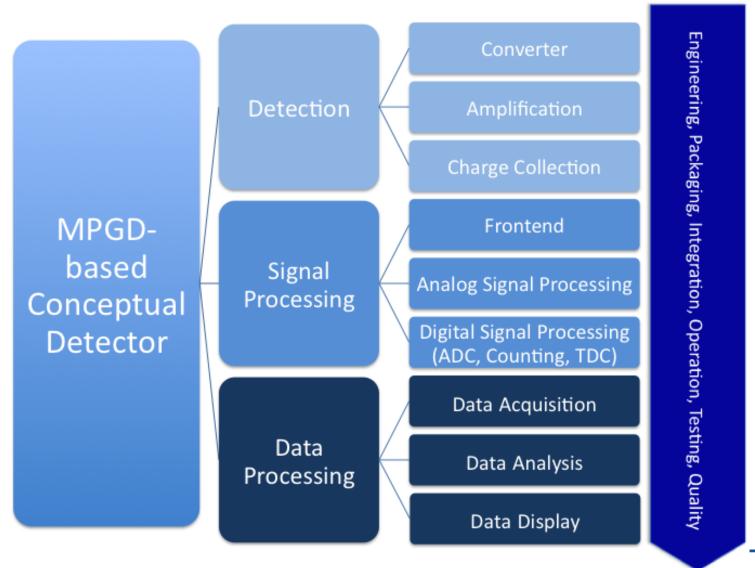





# **MPGD** Inventory

# Collect information on MPGD related technology:

- GEM, Micromegas, THGEM, Ingrid, etc.
- Medipix, VFAT, NINO, HPTDC, etc.
- SRS, etc.
- Production of GEM, THGEM, etc.
- Applications
- Facilities
- Patents

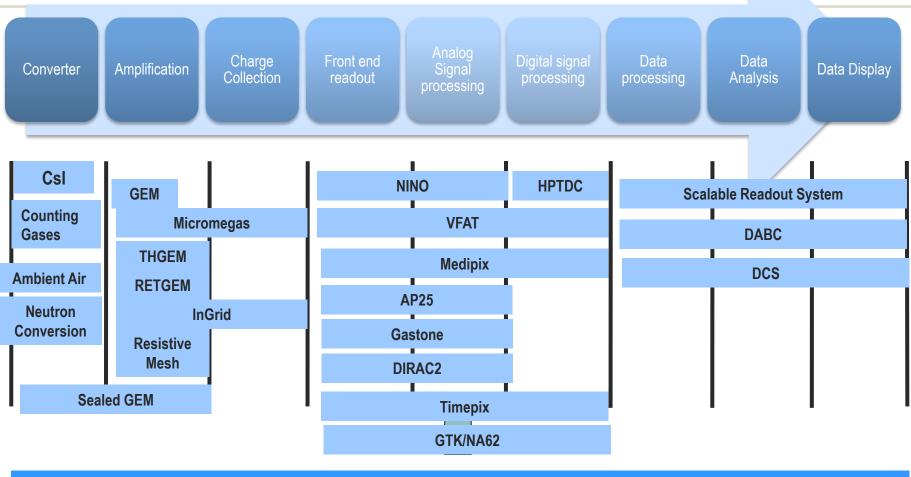

# Classify along a conceptual detector scheme

# Make the inventory available through RD51 web (proposal)





# **MPGD Conceptual Detector**




CERN

RD51 Collaboration Meeting, October 7, 2010

TINGWORK

# **Classification of MPGD solution elements**



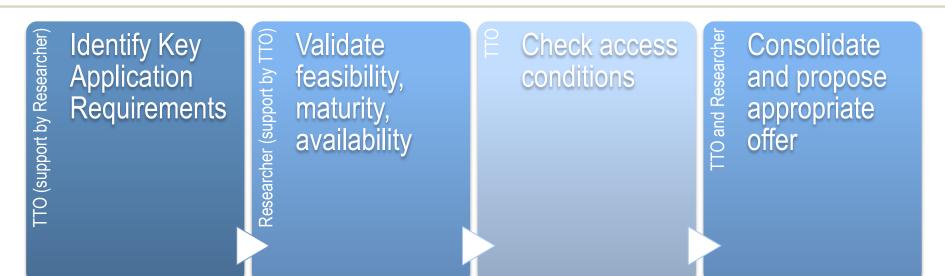
CASCADE

Expertise (Engineering, Production, Packaging, Simulation, Integration, Operation, Testing, Quality)



# **Key Requirements from Specific Applications (1/2)**

| Domains       | Application                                          | Converter                                                                                                                       | Amplification | charge collection                                   | Frontend Readout              | Analog Signal Processing                               | Digital Signal Processing                 | Data Acquisition                                       | Data Analysis   | Data Display    | General Requirements                                                                                                                                                                                                                     |
|---------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------|-------------------------------|--------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 oniunio     | - pp. coulding                                       |                                                                                                                                 | pinioution    |                                                     |                               |                                                        | 2.g.tar orginar i roocaaling              | 2 atta Aoquisition                                     | Zata Analysis   | Data Diopidy    |                                                                                                                                                                                                                                          |
|               |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 | <u> </u>        |                                                                                                                                                                                                                                          |
| HEP resear    |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               | Tracker systems                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               | cerenkov detectors                                   |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
| life science  |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               | Fluorescence Measurement                             |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
| health secto  |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               |                                                      | high detection<br>efficiency (close<br>to 100% to<br>reduce patient<br>dose<br>rate)@140keV<br>position<br>resolution<br><0.5mm | >10^4 -10^5   | < few ns                                            | very fast signal<br>shaping   | fast discrimination                                    | counting logic                            |                                                        |                 |                 | dense conversion materials<br>highly segmented photodetectors<br>event rate: 100MHz/mm^2 (!)<br>1000 projections / s<br>10^5 readout channels<br>dense conversion materials<br>highly segmented photodetectors                           |
|               | PET imaging                                          | high detection<br>efficiency >90%<br>position<br>resolution <5mm<br>no parallax error<br>low material                           | >10^4 -10^5   | < few ns                                            | fast signal shaping:<br><10ns | signal discrimination with<br>timing resolution <100ps | counting and/or time<br>stamping (<100ps) | high bandwidth<br>(some 10^5<br>readout channels<br>!) | device specific | device specific | 150 -200 detector modules per<br>scanner<br>25cm*2 per module<br>100kHz typical single rate per<br>module<br>1MHz maximum single rate per<br>module<br>1MHz typical coincidence rate per<br>scanner<br>4MHz typical coincidence rate per |
| 1             |                                                      | budget                                                                                                                          |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
| homeland s    |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 | 1               |                                                                                                                                                                                                                                          |
|               | Muon Tomography                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               | combined gamma/neutron scanning<br>in cargo scanners | high detection<br>efficiency for<br>high energy<br>gammas (1MeV)<br>and fast<br>neutrons<br>(14MeV)                             |               | pixel size:<br>O(mm^2)                              |                               |                                                        | counting logic                            |                                                        |                 |                 | short scanning time (1-2 minutes)                                                                                                                                                                                                        |
| safety & env  |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        | -                                         |                                                        |                 |                 |                                                                                                                                                                                                                                          |
| ļ             | material inspection                                  |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
| motorial      | 2000                                                 |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
| material scie |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               | X-ray Crystallography                                |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
| Neutron det   |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               |                                                      | detection<br>efficiency 50% to<br>100% for thermal<br>neutrons<br>size: 0.1m^2 to<br>10m^2                                      |               | Pixel size: 1mm <sup>2</sup><br>to 1cm <sup>2</sup> | rate cap. >>100kHz            | time resolution < 1us                                  |                                           |                                                        |                 |                 | Robustness<br>Reliability<br>Large scale manufacturability                                                                                                                                                                               |
| cultural heri | tage                                                 |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
| _             |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
| Energy        |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               | neutron flux measurements                            |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |
|               | burning plasma diagnostics                           |                                                                                                                                 |               |                                                     |                               |                                                        | <u> </u>                                  |                                                        |                 |                 | L                                                                                                                                                                                                                                        |
|               |                                                      |                                                                                                                                 |               |                                                     |                               |                                                        |                                           |                                                        |                 |                 |                                                                                                                                                                                                                                          |




# **Key Requirements from Specific Applications (2/2)**

| Applicatio<br>n | Converter                                                                                           |                                                        | charge<br>collection               | Frontend            | Analog                    | Proces- |          |          | Data<br>Display | General Requirements                                                                           |
|-----------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|---------------------|---------------------------|---------|----------|----------|-----------------|------------------------------------------------------------------------------------------------|
|                 | large                                                                                               | 10 <sup>4</sup> – 10 <sup>5</sup> ,<br>multiple<br>GEM | resolution:<br><100µm,<br>pixel or | standard<br>readout | Simple fast<br>OR trigger |         | Standard | Standard |                 | Very high number of channel<br>(10 <sup>6</sup> )<br>Low particle flux rate<br>Short scan time |
| N-<br>detection | detection<br>efficiency<br>50% to<br>100% for<br>thermal<br>neutrons<br>size:<br>0.1m^2 to<br>10m^2 |                                                        | Pixel size:<br>1mm^2 to            |                     | time<br>resolution <      |         |          |          |                 | Robustness<br>Reliability<br>Large scale<br>manufacturability                                  |



# From Technology Bricks to Solution Packages: How to Proceed ?



# Role of TTO:

• MPGD inventory maintenance, market analysis, IP situation, MPGD technology offer

## Role of Researcher:

 Validation of MPGD technology inventory, validation of key requirements, consultancy for technology offer

#### "The main objective of the R&D program is to advance technological development and application of Micro Pattern Gas Detectors." http://rd51-public.web.cem.ch/RD51%2DPublic/

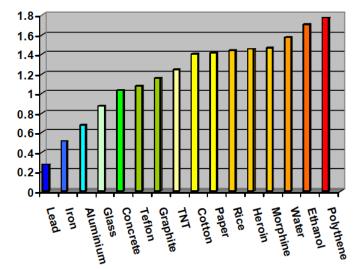
- Increased visibility and awareness of RD51 technologies and expertise through concerted communication and building a MPGD community brand
- →Image of an organised community:
- More attractive R&D offer to industry in partnership
- Concerted offer more attractive for industry to manufacture
- →Promote and strengthen the image of RD51 as reference source for MPGD technologies
- →Possibility to offer customer specific solution packages, expertise and services rather than raw technology components
- →Simplified access to RD51 technologies, patent pool and expertise
- →One SPOC (single point of contact) for facilitated identification of and access to RD51 technology offer



# How to build a technology offer in practice: Ex.1, n/y imaging

R

Case identification: combined neutron / gamma imaging for fast air cargo mass inspection in homeland security


Market needs and kev user effective requirements for mass screening of air cargo containers:

- High resolution images over large areas (few  $m^2$ )
- Accurate scanning without unpacking
- Less than 2 min scan time per container
- Radiation safety compliance
- Low cost, reliable, easy to maintain

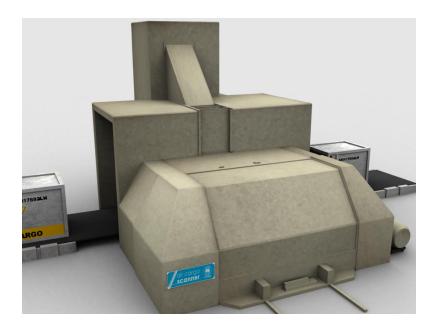
Method: Absorption measurement of Figure 1. Calculated R values for a range of materials, using 14 MeV neutrons and <sup>60</sup>Co gamma 14 MeV neutrons and <sup>60</sup>Co y's (1.17 and 1.33 MeV)

$$R = \frac{\mu_n}{\mu_g} = \frac{\ln(I_n / I_n^0)}{\ln(I_g / I_g^0)}$$

## Each material has a specific R



rays.


J.E.Eberhardt, Y.L. (2006), Fast Neutron and Gamma-Ray Interrrogation of Air Cargo Containers, Proceedings, of Science (FNDA2006)

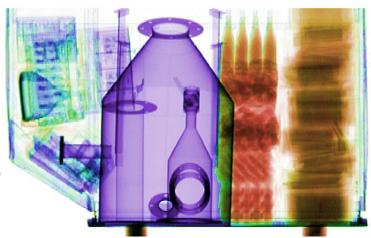


<sup>-</sup> Network

# How to build a technology offer in practice: Ex.1, n/y imaging

# **Prototype scanner (CSIRO) tested with Australian customs (2006):**





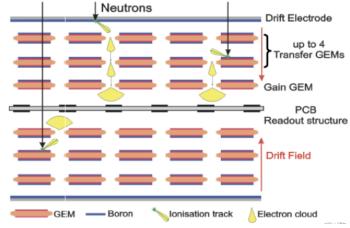

# **Conventional Technologies:**

- Plastic scintillators (n)
- Csl (γ)



RD51 Collaboration Meeting, October 7, 2010




etwork

# How to build a technology offer in practice: Ex.1, n/y imaging

#### Can Particle Physics propose an alternative solution based on MPGD technologies from RD51 to meet user requirements ?

## Combined neutron / gamma imaging with GEM detector stack:

- CASCADE detector system with photo-sensitive layer
  - GEM-based neutron detector module commercially available Integration of photo-sensitive GEM feasible
- Power supply and thermal managemen **EMI** shielding (500 µm Al) Detector entrance window (100 µm Al) FPGA based readout board 2010 CASCA DE ASIC frontend electronic GEM-foils coated with 10B and 2D readout structure CASCADE



Network

M. Klein, CASCADE, Vienna 2010

# How to build a technology offer in practice: Ex.1, $n/\gamma$ imaging

## Check compliance with user requirements

# Identify possible synergies with ongoing RD51 activities

• Are there similar developments ongoing within RD51's own research program ?

# Validate with RD51 experts the availability of necessary technologies and support

- Performance
- Readiness
- Production
- Etc.

# Develop "unique selling points"

• Why customs and others should use it ?

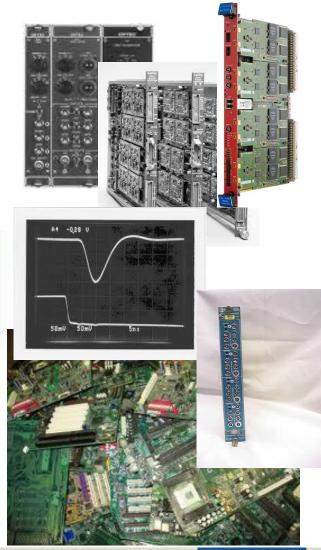


RD51 Collaboration Meeting, October 7, 2010

# User requirementLarge areay/n ?Short scan timey/n ?Shape AND material infoy/n ?Device costsy/n ?



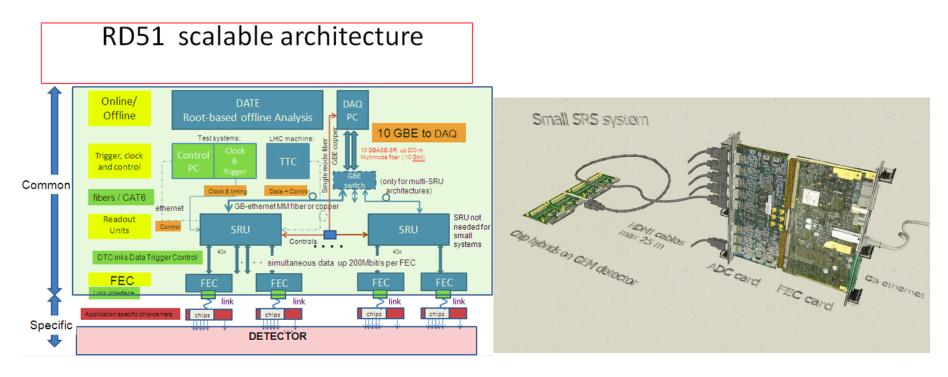
. . .


. . .

Case identification: a flexible, modular readout system for multi channel detector systems based on widely used industry standards for a wide range of applications

# Market needs and user requirements for detector readout systems:

- Modular setup of user specific detector systems
- Support of widely used readout ASICs
- Maximum use of industry standards
- Programmable architectures and trigger schemes
- Easy to use, reliable, cost efficient


**Problem:** No One-Size-Fits-All solution available on the market matching all needs of multi channel detector readout systems





Can Particle Physics propose an alternative solution based on MPGD technologies from RD51 to meet user requirements ?

Scalable Readout System (SRS) as readout system for multi channel detector systems for many different applications





## Check compliance with user requirements

# Identify possible synergies with ongoing RD51 activities

• Are there similar developments ongoing within RD51's own research program ?

# Validate with RD51 experts the availability of necessary technologies and support

- Performance
- Readiness
- Production
- Etc.

## Develop "unique selling proposition"

• Why various applications should use it ?



RD51 Collaboration Meeting, October 7, 2010



#### User requirement

| Modular setup      | y/n ? |
|--------------------|-------|
| Wide ASIC support  | y/n ? |
| Industry standards | y/n ? |
| programmable       | y/n ? |
|                    |       |

## Build final offer:

- Scope
- Access conditions
- support

FRN



#### European Organization for Nuclear Research

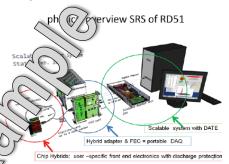
Scalable Readout System for Multi Channel Detector Systems

#### Abstract

Based on developments for Micro Pattern Gas detectors for the detection of particles in many different application domains, the Scalable Readout System (SRS) for multi channel detectors to accommodate an interface to a wide range of commonly used readout ASICS, a scalability from low to large number of readout channels, a flexible data acquisition package enabling the implementation of various readout architectures and trigger schemes based on widely used industrial standards.

#### Technology stage

Various prototypes are available of the shelf or can be produced on sho CERN and RD51 provide support a solutions (data acquisition, chip boards, readout software) for integration of the SNS with user specific detectors and support structures upon request.


#### Possible applications

- Homeland security
- Material research
- Beam monitoring
- Neutron imaging
- Medical Imaging
- Comparative ASIC testing

#### Applications at CERN

 Readout system for scintillator based detector and various MPGD based tracking detector systems

- Scalable from few channel systems up
- to a few millions of readout channels. • User programmable trigger and clock interface
- Possibility to integrate application specific adapter cards
- Availability of low cost test systems for systems with few readout channels



#### Specifications

- 10 Gigabyte Ethernet standard readout links.
- Programmable Front End Cards (FEC's) for standard 6U x 220 Eurocard frames
- Standard connectors for commonly used readout ASICs

#### Advantages

- High flexibility through modular design of key components
- Possibility of configurable turnkey solutions

#### Contact

NN

Tel.: +41 22 767 xxxx Fax: +41 22 767 3540 Email: xxx.yyy@cern.ch

RD51 Collaboration Meeting, October 7, 2010



# Thank you for your attention

For more information and questions please contact:

Hartmut.Hillemanns@cern.ch