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Both experimental and numerical simulation activities being carried out at SINP.

At present, we are in a developmental phase, setting up the laboratory,

building devices and improving the solver.



Background
Detector Simulation and neBEM



Nuclear detector simulation
How to proceed?

• Field Solver – commercial FEM packages (e.g., 

MAXWELL)

• Particle interaction to charge induction –

Garfield framework

 Ionization: energy loss through ionization 

of a particle crossing the gas and production 

of clusters - HEED

 Drift and Diffusion: electron drift velocity 

and the longitudinal and transverse diffusion 

coefficients - MAGBOLTZ

 Amplification: Townsend and attachment 

coefficients - IMONTE

 Charge induction:involves application of 

Reciprocity theorem (Shockley-Ramo's 

theorem), Particle drift, charge sharing (pad 

response function - PRF) - GARFIELD

• Signal generation and acquisition - SPICE

The Field Solver is crucial at every stage – Poisson equation



Analytic

FEM / FDM

 Nearly arbitrary 
geometry

 Flexible

 Exact

 Simple  Interpretation

BEM

 Reduced 
dimension

 Accurate for 
both potential and 
its gradient

Simpler surface 
mesh

Solve

x Complex numerics
x Numerical 
boundary layer
x Numerical and 
physical singularities

x Complex volume mesh
x Solves for potential
x Interpolation for non-
nodal points
x Field values liable to 
be inaccurate (often by 
50% or more!
x Field variation jagged 
instead of being smooth
x Difficulty in 
unbounded domains

× Restricted
x 2D geometry
x Small set of 
geometries
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BEM Basics

Potential u at any point y in the domain V enclosed by a surface S is given by
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where y is in V, u is the potential function, q = u,n, the normal derivative of

u on the boundary, b(x) is the body source, y is the load point and x, the

field point. U and Q are fundamental solutions

U2D = (1/2) ln(r), U3D = 1 / (4r), Q = -(1/2r) r,n

 = 1 for 2D and 2 for 3D. Distance from y to x is r, ni denoted the 

components of the outward normal vector of the boundary.

Green’s identities Boundary Integral Equations

2D Case 3D Case r = 0 r  0, r≠ 0

ln(r) 1/r Weak singularity Nearly weak singularity

1/r 1/r2 Strong singularity Nearly strong singularity

1/r2 1/r3 Hyper singularity Nearly hyper-singularity



BEM Solvers
 Numerical implementation of boundary integral equations (BIE) based on Green’s function by discretization 

of boundary.

 Boundary elements endowed with distribution of sources, doublets, dipoles, vortices (singularities).

 Useful in fluid dynamics, fracture mechanics, acoustics, optics, gravitation, electromagnetics, quantum 
mechanics …
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Electrostatics BIE

Charge density at r’

Green’s function

 - permittivity of medium
discretization

Accuracy depends critically on 
the estimation of [A], in turn, the 
integration of G, which involves 
singularities when r →r'.

Most BEM solvers fail here.

Potential at r

Influence 
Coefficient 
Matrix

{ρ} = [A]-1{Φ}



Major Approximations

Singularities modeled by a sum of 
known basis functions with 
constant unknown coefficients.

 The strengths of the 
singularities  solved depending 
upon the boundary conditions, 
modeled by shape functions.

Singularities assumed to be 

concentrated at centroids of the 

elements, except for special cases 

such as self influence.

Boundary conditions are satisfied

at the same nodal points. 

Constant element approach

Numerical boundary layer

Difficulties in modeling physical singularities

geometric singularity

boundary condition singularity

Conventional BEM



Basis Function Approach

Centroid Collocation
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Conventional BEM

Deals with nodal singularities and, thus, is plagued with the difficulties mentioned earlier
Special treatment for self-influence.
Number of special formulation to deal with critical problems such as such as with large length scale 
variations, closely packed surfaces, corners, edges and so on
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nearly exact BEM

Foundation expressions obtained through the integration of the Green's 
functions are analytic and valid for the complete physical domain

Using symbolic integration techniques, analytic expressions of potential

and force field due to uniform distribution of singularities on flat

rectangular and triangular elements have been obtained

Instead of nodal concentration of singularities, we now have,
 Singularities distributed uniformly on the surface of boundary elements,
 Strength of the singularity changes from element to element,
 Strengths of the singularities solved depending upon the boundary 

conditions, modelled by the shape functions.

ISLES library and neBEM 3D Solver



Basis Function Approach

Centroid Collocation
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neBEM formalism

No singularities, no special treatments, no additional formulations! 

Carry out the integrations! SdrrrGA
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Foundation expressions of ISLES

ISLES: Inverse Square Law Exact Solutions
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• Two parameters are important: 

precision and speed

• For the evaluation of accuracy, we 

have computed the influence at a 

given point by further discretizing the 

triangular element into small 

rectangular elements

• Evaluation of speed has been carried 

out using the Linux / UNIX system 

routine “gprof”

• From the study we have concluded 

that the accuracy achieved more than 

justifies the extra computation 
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Similar expressions as for 
rectangular elements but much 
longer

May need translation, vector 
rotation and simple scalar scaling

Triangular elements

Foundation expressions of ISLES



Contrast of approaches
nodal versus distributed



Contrast of approaches

 Easily implemented

Numerical boundary layer

Inaccurate near field

Closely spaced elements 

intractable

Computationally expensive

 Accurate in the near field

 Computationally efficient

Previous approaches were 

extremely difficult to implement
Hess and Smith (67) needs in-plane 

projections and evaluation of complicated 

expressions

Newman (84) needs application of Gauss-

Bonnet theorem and evaluation of 

complicated expressions

ISLES is as accurate and straight-

forward to implement

Intermediate approaches such as Dual reciprocity 

BEM, Extended BEM, Thin plate BEM:

 Accurate within the range of validity

Valid for a specific set of problems

Complicated mathematics



Floating conductors – an example 
of a constrained solution

• Several approaches, following one of the more efficient, used
commonly for `dummy fills’ in integrated circuits.

• Two properties of the floating conductors are exploited

 A uniform potential will be created on each floating conducting particle
due to the charges induced on it. This potential may vary from one
floating particle to another.

 For a given floating conducting particle, the sum of all charges induced
on the particle is zero.

• This translates as additional one column and one row for each
floating conductor in the system to modify the system of
algebraic equations representing the physical situation.

• Rest is usual.

• It is similarly possible to constrain a solution in order to satisfy 
other Physics requirements.



Floating conductors

• Consider a system of two conductors, each 
having been discretized into two elements.

• One of these conductors is at a known 
voltage, V. The other conductor is at a 
floating voltage VF, which is unknown.

• Number the elements on the conductor 
with known voltage to be 1, 2, and those 
on the floating conductor to be 3, 4.

• Denote charge densities by i, area by Ai, 
on each element

• Resulting system of equation is as shown.

• In the above system, Iij denotes the 
influence of the jth element on the ith

element.

• Please note that if we have more than one 
floating conductor, they cannot be 
assumed to be at the same potential, and 
one column and one row as shown above 
needs to be added for each floating 
conductor.

A simple example
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Objects with known charge density

• Easy to take these into account

• Only the right-hand side changes, the influence matrix

remaining unchanged

• It is convenient to use big, and as a result, less number of

elements because of the new foundation expressions

• The resulting computation is very efficient

• At present, it is possible to consider the effects of point, line

and surface charges in the nearly exact sense. Work on an

improved model for volume charges (space charges) is on at a

very high priority (more on this later)



Recent developments
Complete and almost done!



Topics

• Repeated structures

• Weighting field

• New / reuse model

• Discretization controls

• Wire primitives

• Mirror reflections



Repeated structures

• It is difficult to evaluate the influence matrix for periodic structures.

• A simpler approach was adopted in which primitives are allowed to 
be repeated appropriate number of times in X, Y or Z directions.

• The direction can be arbitrary, but at present repetition only in these 
three directions has been implemented.

• The major approximation that the user has to be aware is, while 
using repetition, it is not only the geometry that is being copied, but 
also the charge density. This is natural for periodic structures.

• The computational advantage is huge. While the computation of 
influence coefficient matrix is longer, the influence matrix is much 
smaller and the resulting matrix inversion time is smaller by orders 
of magnitude!

• Interface has been completed and functional.



Weighting Field

• Efficient computation of weighting field has been 
implemented.

• The influence matrix is inverted only once and kept in 
memory or in the form of a stored file.

• Depending on the selected electrode(s), necessary rows 
of the inverted matrix is simply added to provide the 
charge density associated when the selected electrodes 
are raised to 1.

• From the obtained solution (charge density), weighting 
field at any point can be easily obtained.

• Interface has been completed.



New / Reuse Model

• Storage of influence coefficient matrix, inverted matrix

• Storage of primitives and elements have been added

• It should be possible to Reuse earlier solutions

• Can be very useful for trying out new voltage 
configurations for the same device geometry

• Interface working, although there can be small 
modifications in the immediate future.

• Formatted files are being used at present. We need to 
shift to unformatted files, as soon as possible.



Discretization controls

• Some modifications have been made in the way a user 
controls the discretization

• Target element size can be specified

• Maximum and minimum number of elements on each 
primitive can be specified

• Number of elements on a primitive (varying from 
primitive to primitive) can be specified

• Needs significant improvement – has to be made 
adaptive

• Interface present and woring.



Wire Primitives

• Wires of finite length can be added as components of a 
device

• They can be of any orientation

• Wires can be modeled as thick wire (cylinders)

• If length >> radius, they can be modeled as thin wires

• Thin wires are very efficient computationally

• Small issues related to repetition of wire primitives has 
been sorted out

• Interface present and working



Wire mesh without repetition

The script is long

The voltage 

contour near drift 

plane should be flat

No other problem 

observed at the 

moment 



Wire mesh with 5 repetitions

The script is long

The voltage 

contour near drift 

plane should be flat

No other problem 

observed at the 

moment 



Wire mesh using 20 repetitions

The script is short

The voltage 

contour near drift 

plane very flat

Takes longer time

No other problem 

observed at the 

moment 



Mirror Reflection

• Added very recently

• Mirrors normal to X, Y and Z are allowed

• Some very basic tests have been found to be satisfactory

• Integration to the interface yet to be completed

• Work on mirrors at arbitrary orientation can be pursued, 
if necessary

• Capacitance of a square flat plate at 1 V: 0.3667

• Rough Calculation: Full Plate 0.363708

Half Plate(X Mirror) 0.181854

Half Plate (Y Mirror) 0.181854

Half Plate (Z Mirror) 0.181854



Applications
MPGDs and Others



Electrostatics of MPGDs
Micromegas Micro-Wire

Theoretical considerations 
imply better performance by the 
neBEM solver which solves for 
the charge density on boundary 
elements rather than potential 
at a pre-fixed set of nodal 
points.

Numerical comparisons
1) neBEM results are as accurate 
as FEM results in the far-field
2) In the near-field, neBEM 
performs better than FEM
3) No artificial truncation of 
open domain is necessary while 
using neBEM



Comparison with FEM
Near-field

• Field around a line just 1μm away from 

the anode surface is considered here –

sampling for neBEM is as small as 

0.1μm!

• The mesh configuration has higher field 

values throughout

• Sharp rise in the field values is observed 

at all the four edges

• Smooth variation of field is observed on 

each of the four surfaces

• Field values are found to decrease 

sharply once the points are beyond anode 

surfaces

• FEM computation is clearly unable to 

produce correct results near and at the 

edges

• FEM, although better on the surfaces, 

still falls behind neBEM in performance



Effect of discretization
Near-field

• In the earlier computation, we had 
used 20 elements to represent the top 
surface and 10 elements on the side 
surface. The elements were made 
successively smaller towards the 
edges

• In order to study effect of using 
coarse discretization, we also used 
larger elements of fixed size – only 3 
elements each to represent both top 
and side surfaces

• Although there is significant 
difference between the results, the 
overall trend is represented well by 
the larger elements

• It is important to note that there is no 
jaggedness (at 0.1μm sampling) 
despite the use of unreasonably large 
elements!



Microscopic details in Micromegas

Surface side in the amplification regionSurface side in the drift region

Variation of  transverse electric field on the mesh surface along the transverse 

direction for four different shape of mesh hole 

The transverse electric field is significant close to the edge

Possibility of discharges, again.



Garfield+neBEM+Magboltz+Heed
Micromegas

Role of different geometrical models for the same device



NIM A (2010) (in press) (doi: 10.1016/j.nima.2010.07.026)
“Realistic three dimensional simulation on the performance of micromegas”

P. Bhattacharya, S. Mukhopadhyay, N. Majumdar, S. Bhattacharya

MicroMEGAS

Gas composition: 90% Argon + 10% Isobutane
Temp.: 300 K, Pressure : 1 Atm



MicroMEGAS



Garfield+neBEM+Magboltz+Heed
Micromegas

Roles different parameters are likely to play:

Here we toy with the percentage of

Penning Transfer

Similar Physics processes could be

Multiple Scattering, Delta Ray production

and so on …



Garfield+neBEM+Magboltz+Heed
MicroHoleStripPlate
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Surface asperities:
Influence of the surface asperities of the resistive electrode on the field 
configuration

NIM A (doi: 10.1016/j.nima.2010.09.168)
“Performances of silicone coated high resistive bakelite RPC”

S. Biswas et al.

Modeled asperities

+ve asperity

-ve asperity



Roughness modeling with new shapes in Garfield



For the representative model



For the “true” model



Ongoing developments
In lieu of a future plan



Topics

• Known charges

• Space charge

• Adaptive meshing

• Parallelization



Effect of known charge

• Known point, line and surface charges can be modeled 
efficiently.

• Only the RHS of the matrix system gets modified, as 
explained earlier

• Can be very useful for dynamic problems such as 
charging up

• Needs more work

• Interface to be developed



Particles on Surface (ParSur)
An improved model to represent space charge

Possible only through the use of neBEM formalism

PIC

ParSur



Space charge
Particles on Surface (ParSur) 

• Although the results are preliminary, both potential and field within 
the cell has been estimated far more accurately by ParSur than PIC

PARticles on SURface (PARSUR) seems to be the new model to pursue!!



Adaptive Meshing

• Meshing (Delaunay) being worked upon using the 
CGAL library

• Arbitrary flat polygons have been discretized

• Complex shapes, such as holes, yet to be tried

• Needs lot more work

• Interface to be developed



Parallelization using multi-threading

Operation Serial

(seconds)

Parallel

(seconds)

Influence matrix 27 5

Matrix decomposition 5313 1613

Column inversion 2303 1138

Solve 28 6

Total 7671 2762

Matrix size 10,000 × 10,000

GPU computation will also be evaluated as an option

Availability of multi-core CPUs on desktops and laptops



Future plan in Experiments

A small MPGD laboratory is being developed

Experimental efforts on:
Measurement of detector characteristics
Measurement of electric field distribution


