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Both experimental and numerical simulation activities being carried out at SINP.
At present, we are in a developmental phase, setting up the laboratory,
building devices and improving the solver.



Background

Detector Simulation and neBEM



Nuclear detector simulation

How to proceed?
A Field Solver i commercial FEM packages (e.g.,

Fundamental Process

MAXWELL)
Beam () lonizations A Particle interaction to charge induction 7
; framework
u energy loss through ionization
of a particle crossing the gas and production
of clusters -
Dt Voume Dt and Diftusion { electron drift velocity

and the longitudinal and transverse diffusion
coefficients -

" U Townsend and attachment
- ' Amplification and coefficients -
Amplification Gap further Diffusion
u involves application of
Readout Pads —
|

Reciprocity theorem (Shockley-Ramo's
theorem), Particle drift, charge sharing (pad
response function - PRF) -

A Signal generation and acquisition - SPICE

Pad Response

Borrowed from Yukihiro Kato, IHEP, Beijing(7

The Field Solver is crucial at every stage i Poisson equation



Solve

Ceev) < PR ) Cremsrom)

V Reduced
dimension

V Accurate for
both potential and
its gradient

V Simpler surface
mesh
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i

V Nearly arbitrary
geometry

V Flexible

v

x Complex numerics

X Numerical
boundary layer
X Numerical and

physical singularities

V Exact

vV Simple Interpretation
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X Restricted

X 2D geometry
x Small set of
geometries

x Complex volume mesh
X Solves for potential

X Interpolation for non
nodal points

x Field values liable to
be inaccurate (often by
50% or more!

X Field variation jagged
instead of being smooth
x Difficulty in
unbounded domains

4




BEM Basics

Gr eends immn Bourdarydrgegral Equations

Potential u at any point y in the domain V enclosed by a surface S is given by

uy) = i) (x y)a(x)d(x) - fR(x, y)u(x)d(x) + f{J (x, y)b(x)dV(x)

wherey is in V, u is the potentialfunction,q = u ,, the normalderivativeof
u on the boundary,b(x) is the body source)y is the load point and x, the
field point U andQ arefundamentasolutions
Up = (1/20) In(r), Usp =1/ (4r), Q =-(1/2p &)1,
a =1 for 2D and 2 for 3D. Distance froyrto X is r, n, denoted the
components of the outward normal vector of the boundary.




BEM Solvers
&)

i Numeri cal i mpl ementation of boundary integral equations
of boundary.

i Boundary elements endowed with distribution of sources, doublets, dipoles, vortices (singularities).

a  Useful in fluid dynamics, fracture mechanics, acoustics, optics, gravitation, electromagnetics, quantum
mechanics €

o)

—/ 0]

Bilectrostatics BIE

Potential at r - mﬁy@ﬁ
— =t

@iscretiz_ation }

e - permittivity of medium

“Accuracy ‘depends criticallyori -

the' estimation af [A,"In turn, the .
integration of ‘G, which involves . -~
‘singularitieswhent ¥, ..« -

Influence
Coefficient

Matrix

Most BEM solvers fail here.



Conventional BEM

AEConstant element approach
\

Singularities assumed to be
concentrated at centroids of the
elements, except for special cases
such as self influence.

\

Boundary conditions are satisfied
at the same nodal points.

\M

[ Numerical goundary Iayer] /( geometric singularity |

[Difficulties in modeling physical singularities boundary condition singularity ]




Conventional BEM Centroid Collocation

Basis Function Approach
| |

Collocation point
Node where singularity is located and
the boundary condition is satisfied

Single point quadrature




nearly exact BEM

Using symbolic integration techniques, analytic expressions of potential
and force field due to uniform distribution of singularities on flat
and elements have been obtained

Instead of nodal concentration of singularities, we now have,
ASingularities distributed uniformly on the surface of boundary elements,
A Strength of the singularity changes from element to element,

A Strengths of the singularities solved depending upon the boundary

conditions, modelled by the shape functions.

- a )

ISLES library and neBEM 3D Solver

Foundation expressions obtained through the integration of the Green's
functions are analytic and valid for the complete physical domain




neBEM formalism Centroid Collocation

Basis Function Approach v ( ) n . 1
— A -
. 21 J\parQu”Xq - x|

Node where only boundary A,j
condition is satisfied

7

dS

X

- Collocation point
1

Carry out the integrations! A ; = @G(I‘,ri)/’(ri)dSi

No singularities, no special treatments, no additional formulations! J




Foundation expressions of ISLES

Rectangular elements

FON D=

Influence of a flat boundary element e o ~
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Value of multiple dependent on May need translation and vector rotation

strength of source and other physical
consideration ISLES: Inverse Square Law Exact Solutions




Foundation expressions of ISLES

Potential distribution on the element

- (Z- Z)o .
] IJ 0.03
F (X Y, Z) |ﬂ% (Z Zn) 0@9
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Foundation expressions of ISLES

Triangular elements

Influence of a flat triangular element

Influenced
Point

Element

(0.0, zMax)

LA dxdz

F(X,Y,Z2)=AaNn
U -y o

Similar expressions as for
rectangular elements but much
longer

Two parameters are important:
precision and speed

For the evaluation of accuracy, we
have computed the influence at a
given point by further discretizing the
triangular element into small
rectangular elements

Evaluation of speed has been carried
out using the Linux / UNIX system
routine Agprofo
From the study we have concluded
that the accuracy achieved more than
justifies the extra computation

May need translation, vector
rotation and simple scalar scaling



Contrast of approaches
nodal versus distributed
Influence of a flat triangular element in Usual BEM

Y
Influenced ; ;
Pt Influence of a flat triangular element in ISLES
I Influenced
Point

1.0,0.0)

/ Element

Element

(0.0, zMax)



Contrast of approaches

Easily implemented Accurate in the near field
Numerical boundary layer Computationally efficient
Inaccurate near field Previous approaches were
Closely spaced elements extremely difficult to implement
intractable needs in-plane

: . projections and evaluation of complicated
Computationally expensive expressions

needs application of Gauss-
Bonnet theorem and evaluation of
complicated expressions
ISLES is as accurate and straight-

forward to implement




Floating conductorsd an example
of a constrained solution

A Severalapproachedipllowing one of the more efficient, used
commonlyfor dummyf | linlinkedrateccircuits

A Two properties of the floating conductors are exploited

U A uniform potentialwill be createdon eachfloating conductingparticle

due to the chargesinducedon it. This potential may vary from one
floating particleto another

U Foragivenfloating conductingparticle,the sumof all chargesnduced
ontheparticleis zera

A This translatesasadditionalone columnandonerow for each
floating conductorin the systemto modify the system of
algebraicequationsepresentinghe physicalsituation

A Rest is usual.

A It is similarly possible to constrain a solution in order to satisfy
other Physics requirements.



To I

Floating conductors

A simple example

Problem with one floating conductor

Consider a system of two conductors, eacl
having been discretized into two elements.

One of these conductors is at a known
voltage, V. The other conductor is at a
floating voltage ¢, which is unknown.

Number the elements on the conductor
with known voltage to be 1, 2, and those
on the floating conductor to be 3, 4.

Denote charge densities by area by A
on each element

Resulting system of equation is as shown.
In the above systenh; denotes the

influence of the} element on the &l
element. > 1
Please note that if we have more than one %1%1
floating conductor, they cannot be

assumed to be at the same potential, and %Cﬁ
one column and one row as shown above

needs to be added for each floating pii
conductor

‘

Known
Potential
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Objects with known charge density

A Easyto taketheseinto account

A Only the right-hand side changes,the influence matrix
remainingunchanged

A It is convenientto use big, and as a result, less number of
elementdbecausef thenewfoundationexpressions

A Theresultingcomputatioris very efficient

A At present,t is possibleto considerthe effectsof point, line
and surfacechargesin the nearly exact sense Work on an
Improvedmodelfor volumechargeqspacechargesjs onata
very high priority (moreonthis later)



Recent developments

Complete and almost done!



Topics

3 Repeated structures
3 Weighting field

3 New / reuse model

3 Discretization controls
3 Wire primitives

3 Mirror reflections



Repeated structures

It is difficult to evaluate the influence matrix for periodic structures.

A simpler approach was adopted in which primitives are allowed to
be repeated appropriate number of times in X, Y or Z directions.

The direction can be arbitrary, but at present repetition only in these
three directions has been implemented.

The major approximation that the user has to be aware is, while
using repetition, it is not only the geometry that is being copied, but
also the charge density. This is natural for periodic structures.

The computational advantage is huge. While the computation of
Influence coefficient matrix is longer, the influence matrix is much

smaller and the resulting matrix inversion time is smaller by orders
of magnitude!

Interface has been completed and functional.



Weighting Field

Efficient computation of weighting field has been
Implemented.

The influence matrix is inverted only once and kept in
memory or in the form of a stored file.

Depending on the selected electrode(s), necessary rows
of the inverted matrix is simply added to provide the
charge density associated when the selected electrodes
are raised to 1.

From the obtained solution (charge density), weighting
field at any point can be easily obtained.

Interface has been completed.
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New / Reuse Model

Storage of influence coefficient matrix, inverted matrix
Storage of primitives and elements have been added
It should be possible to Reuse earlier solutions

Can be very useful for trying out new voltage
configurations for the same device geometry

Interface working, although there can be small
modifications in the immediate future.

Formatted files are being used at present. We need to
shift to unformatted files, as soon as possible.



Discretization controls

Some modifications have been made in the way a user
controls the discretization

Target element size can be specified

Maximum and minimum number of elements on each
primitive can be specified

Number of elements on a primitive (varying from
primitive to primitive) can be specified

Needs significant improvement ¢ has to be made
adaptive

Interface present and woring.
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Wire Primitives

Wires of finite length can be added as components of a
device

They can be of any orientation

Wires can be modeled as thick wire (cylinders)

If length >> radius, they can be modeled as thin wires
Thin wires are very efficient computationally

Small issues related to repetition of wire primitives has
been sortedout

Interface present and working



Wire mesh without repetition
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Wire mesh with 5 repetitions

AThe script is long
AThe voltage
contour near drift
plane should be flat
ANo other problem
observed at the
moment
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