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Both experimental and numerical simulation activities being carried out at SINP.

At present, we are in a developmental phase, setting up the laboratory,

building devices and improving the solver.



Background
Detector Simulation and neBEM



Nuclear detector simulation
How to proceed?
Å Field Solver ïcommercial FEM packages (e.g., 

MAXWELL)

Å Particle interaction to charge induction ï

Garfield framework

ü Ionization: energy loss through ionization 

of a particle crossing the gas and production 

of clusters - HEED

ü Drift and Diffusion: electron drift velocity 

and the longitudinal and transverse diffusion 

coefficients - MAGBOLTZ

ü Amplification: Townsend and attachment 

coefficients - IMONTE

ü Charge induction:involves application of 

Reciprocity theorem (Shockley-Ramo's 

theorem), Particle drift, charge sharing (pad 

response function - PRF) - GARFIELD

ÅSignal generation and acquisition - SPICE

The Field Solver is crucial at every stage ïPoisson equation



Analytic

FEM / FDM

VNearly arbitrary 
geometry

VFlexible

VExact

VSimple  Interpretation

BEM

VReduced 
dimension

VAccurate for 
both potential and 
its gradient

VSimpler surface 
mesh

Solve

x Complex numerics
x Numerical 
boundary layer
x Numerical and 
physical singularities

x Complex volume mesh
x Solves for potential
x Interpolation for non -
nodal points
x Field values liable to 
be inaccurate (often by 
50% or more!
x Field variation jagged 
instead of being smooth
x Difficulty in 
unbounded domains

×Restricted
x 2D geometry
x Small set of 
geometries

SPm =ÐÐ ).(



BEM Basics

Potential u at any point y in the domain V enclosed by a surface S is given by
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wherey is in V, u is thepotentialfunction,q = u,n, thenormalderivativeof

u on the boundary,b(x) is the body source,y is the load point andx, the

field point. U andQ arefundamentalsolutions

U2D = (1/2p) ln(r), U3D = 1 / (4pr), Q = -(1/2para) r,n

a= 1 for 2D and 2 for 3D. Distance from y to x is r, ni denoted the 

components of the outward normal vector of the boundary.

Greenôs identitiesBoundary Integral Equations

2D Case 3D Case r = 0 r :ƔȮɯÙǼɯƔ

ln(r) 1/r Weak singularity Nearly weak singularity

1/r 1/r2 Strong singularity Nearly strong singularity

1/r2 1/r3 Hyper singularity Nearly hyper -singularity



BEM Solvers
ü Numerical implementation of boundary integral equations (BIE) based on Greenôs function by discretization 

of boundary.

ü Boundary elements endowed with distribution of sources, doublets, dipoles, vortices (singularities).

ü Useful in fluid dynamics, fracture mechanics, acoustics, optics, gravitation, electromagnetics, quantum 
mechanics é
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Electrostatics BIE

Charge density at rõ

Greenõs function

e- permittivity of medium
discretization

Accuracy depends critically on 
the estimation of [A], in turn, the 
integration of G, which involves 
singularities when r Ÿ r'.

Most BEM solvers fail here.

Potential at r

Influence 
Coefficient 
Matrix

{ɟ} = [A] -1{ū}



Major Approximations

ÁSingularities modeled by a sum of 
known basis functions with 
constant unknown coefficients.

ÁThe strengths of the 
singularities  solved depending 
upon the boundary conditions, 
modeled by shape functions.

Singularities assumed to be 

concentrated at centroids of the 

elements, except for special cases 

such as self influence.

Boundary conditions are satisfied

at the same nodal points. 

Constant element approach

Numerical boundary layer

Difficulties in modeling physical singularities

geometric singularity

boundary condition singularity

Conventional BEM



Basis Function Approach

Centroid Collocation
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icx Collocation point

Conventional BEM

üDeals with nodal singularities and, thus, is plagued with the difficulties mentioned earlier
üSpecial treatment for self-influence.
üNumber of special formulation to deal with critical problems such as such as with large length scale 
variations, closely packed surfaces, corners, edges and so on
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Node where singularity is located and
the boundary condition is satisfied



nearly exact BEM

Foundation expressions obtained through the integration of the Green's 
functions are analytic and valid for the complete physical domain

Using symbolic integration techniques, analytic expressions of potential

and force field due to uniform distribution of singularities on flat

rectangular and triangular elements have been obtained

Instead of nodal concentration of singularities, we now have,
ÁSingularities distributed uniformly on the surface of boundary elements,
ÁStrength of the singularity changes from element to element,
ÁStrengths of the singularities solved depending upon the boundary 

conditions, modelled by the shape functions.

ISLES library and neBEM 3D Solver



Basis Function Approach

Centroid Collocation

( )
1

,

1
i

i

n

c j

j c

i j

panel j

x dS
x x

A

a
=

¡Y =
¡-

ä ñ

( )

( )

11,1 1, 1

,1 ,
n

cn

n n n n c

xA A

A A x

a

a

è øYè øè ø
é ùé ùé ù
é ùé ùé ù=é ùé ùé ù
é ùé ùé ù
é ùé ùé ù Yê úê ú ê ú

icx Collocation point

neBEM formalism

No singularities, no special treatments, no additional formulations! J

Carry out the integrations! SdrrrGA
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Foundation expressions of ISLES

ISLES: Inverse Square Law Exact Solutions
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Å Two parameters are important: 

precision and speed

Å For the evaluation of accuracy, we 

have computed the influence at a 

given point by further discretizing the 

triangular element into small 

rectangular elements

Å Evaluation of speed has been carried 

out using the Linux / UNIX system 

routine ñgprofò

Å From the study we have concluded 

that the accuracy achieved more than 

justifies the extra computationññ
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Similar expressions as for 
rectangular elements but much 
longer

May need translation, vector 
rotation and simple scalar scaling

Triangular elements

Foundation expressions of ISLES



Contrast of approaches
nodal versus distributed



Contrast of approaches

VEasily implemented

Numerical boundary layer

Inaccurate near field

Closely spaced elements 

intractable

Computationally expensive

VAccurate in the near field

VComputationally efficient

Previous approaches were 

extremely difficult to implement
Hess and Smith (67) needs in-plane 

projections and evaluation of complicated 

expressions

Newman (84) needs application of Gauss-

Bonnet theorem and evaluation of 

complicated expressions

VISLES is as accurate and straight-

forward to implement

Intermediate approaches such as Dual reciprocity 

BEM, Extended BEM, Thin plate BEM:

VAccurate within the range of validity

Valid for a specific set of problems

Complicated mathematics



Floating conductors ðan example 
of a constrained solution

ÅSeveralapproaches,following oneof the moreefficient, used
commonlyfor `dummyfillsôin integratedcircuits.

ÅTwo properties of the floating conductors are exploited

üA uniform potentialwill becreatedon eachfloating conductingparticle
due to the chargesinducedon it. This potential may vary from one
floatingparticleto another.

üFor a givenfloating conductingparticle,thesumof all chargesinduced
ontheparticleis zero.

ÅThis translatesasadditionalonecolumnandonerow for each
floating conductor in the system to modify the system of
algebraicequationsrepresentingthephysicalsituation.

ÅRest is usual.

ÅIt is similarly possible to constrain a solution in order to satisfy 
other Physics requirements.



Floating conductors

Å Consider a system of two conductors, each 
having been discretized into two elements.

Å One of these conductors is at a known 
voltage, V. The other conductor is at a 
floating voltage VF, which is unknown.

Å Number the elements on the conductor 
with known voltage to be 1, 2, and those 
on the floating conductor to be 3, 4.

Å Denote charge densities by ri, area by Ai, 
on each element

Å Resulting system of equation is as shown.

Å In the above system, I ij denotes the 
influence of the jth element on the ith

element.

Å Please note that if we have more than one 
floating conductor, they cannot be 
assumed to be at the same potential, and 
one column and one row as shown above 
needs to be added for each floating 
conductor.

A simple example
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Objects with known charge density

ÅEasyto taketheseinto account

ÅOnly the right-hand side changes, the influence matrix

remainingunchanged

ÅIt is convenientto use big, and as a result, less numberof

elementsbecauseof thenewfoundationexpressions

ÅTheresultingcomputationis veryefficient

ÅAt present,it is possibleto considerthe effectsof point, line

and surfacechargesin the nearly exact sense. Work on an

improvedmodelfor volumecharges(spacecharges)is on at a

veryhighpriority (moreon this later)



Recent developments
Complete and almost done!



Topics

ɈRepeated structures

ɈWeighting field

ɈNew / reuse model

ɈDiscretization controls

ɈWire primitives

ɈMirror reflections



Repeated structures

Ɉ It is difficult to evaluate the influence matrix for periodic structures.

Ɉ A simpler approach was adopted in which primitives are allowed to 
be repeated appropriate number of times in X, Y or Z directions.

Ɉ The direction can be arbitrary, but at present repetition only in these 
three directions has been implemented.

Ɉ The major approximation that the user has to be aware is, while 
using repetition, it is not only the geometry that is being copied, but 
also the charge density. This is natural for periodic structures.

Ɉ The computational advantage is huge. While the computation of 
influence coefficient matrix is longer, the influence matrix is much 
smaller and the resulting matrix inversion time is smaller by orders 
of magnitude!

Ɉ Interface has been completed and functional.



Weighting Field

ɈEfficient computation of weighting field has been 
implemented.

ɈThe influence matrix is inverted only once and kept in 
memory or in the form of a stored file.

ɈDepending on the selected electrode(s), necessary rows 
of the inverted matrix is simply added to provide the 
charge density associated when the selected electrodes 
are raised to 1.

ɈFrom the obtained solution (charge density), weighting 
field at any point can be easily obtained.

ɈInterface has been completed.



New / Reuse Model

ɈStorage of influence coefficient matrix, inverted matrix

ɈStorage of primitives and elements have been added

ɈIt should be possible to Reuse earlier solutions

ɈCan be very useful for trying out new voltage 
configurations for the same device geometry

ɈInterface working, although there can be small 
modifications in the immediate future.

ɈFormatted files are being used at present. We need to 
shift to unformatted files, as soon as possible.



Discretization controls

ɈSome modifications have been made in the way a user 
controls the discretization

ɈTarget element size can be specified

ɈMaximum and minimum number of elements on each 
primitive can be specified

ɈNumber of elements on a primitive (varying from 
primitive to primitive) can be specified

ɈNeeds significant improvement ɬhas to be made 
adaptive

ɈInterface present and woring.



Wire Primitives

ɈWires of finite length can be added as components of a 
device

ɈThey can be of any orientation

ɈWires can be modeled as thick wire (cylinders)

ɈIf length >> radius, they can be modeled as thin wires

ɈThin wires are very efficient computationally

ɈSmall issues related to repetition of wire primitives has 
been sorted out

ɈInterface present and working



Wire mesh without repetition

ÁThe script is long

ÁThe voltage 

contour near drift 

plane should be flat

ÁNo other problem 

observed at the 

moment 



Wire mesh with 5 repetitions

ÁThe script is long

ÁThe voltage 

contour near drift 

plane should be flat

ÁNo other problem 

observed at the 

moment 


