Common software for CMS simulation for the HL-LHC

HL-LHC Simulation Mini-Workshop 29 April, 2021

Sam Bein, Universität Hamburg

With input from Vladimir Ivantchenko, Danilo Piparo, David Lange, Kevin Pedro, Sunanda Banerjee

Simulation @CMS

- Vast spectrum of CMS physics analyses requires a large number of simulated events in order to achieve definitive physics results
- CMS has developed a detailed Geant4-based detector simulation framework (FullSim), with various CMS-specific optimisations (MC sampling, customised physics lists, etc)
 - D.J. Lange et al., J. Phys.: Conf. Ser. 608, 012056 (2015)
 - M. Hildreth et al., J. Phys.: Conf. Ser. 664, 072022 (2015)
 - M. Hildreth et al., J. Phys.: Conf. Series 898, 042040 (2017)
 - Geant4 10.4 is used for Run 2, 10.7 is being prepared for Run 3
- CMS continues to develop largely parametric fast simulation (FastSim) framework which will have an increased role in the future
 - arXiv:1701.03850 (2017)

Computing needs, budget

- Current projections of computing needs still above projected availability (ignoring the impact of R&D!): ramping up for Run 4
- Reconstruction currently shown to dominate the computation time; ongoing development should reduce this considerably
 - Note for the Fast MC chain, the RECO step is also customised

FullSim Phase 2 upgrade

- Include new detectors with higher resolutions, radiation hardness
 - Phase-2 Tracker https://cds.cern.ch/record/2272264?ln=en
 - Time of flight (MTD) detector https://cds.cern.ch/record/2667167?ln=en
 - Endcap calorimeter (HGCAL) https://cds.cern.ch/record/2293646?ln=en
 - Muon detectors (GEM) https://cds.cern.ch/record/2021453?ln=en
- Use of DD4Hep for detector geometry beginning with Run 3
- Current FullSim for Phase-2 is about 2-3 times slower than simulation for Run-3
 - Factor of 2 from HGCal geometry complexity
 - Factor of 1.5 from more precise physics lists (try to match HGCal measurement accuracy)
 - https://arxiv.org/abs/2004.02327
- Will benefit from further software and accuracy improvements of Geant4, aiming for high quality simulation of response of new detectors

High Granularity Calorimeter Phase-2 CMS Endcap

- New endcap calorimeter under design and development for Phase 2
 - HGCal to provide better resolution, granularity than existing CMS calorimeters
 - 6M output channels
 - Possibility for high-quality particle flow analysis in the forward region

Electromagnetic calorimeter (CE-E):

Si/CuW/Pb absorbers 28 layers, 25.5 X_0 , 1.7 λ

Hadronic calorimeter (CE-H):

Si & scintillator, steel absorbers, 22 layers, 9.5 λ

Simulation precision must meet the mark for new, high performing detector

Possible Geant4 improvements for CMS

- Specialized geometry and navigation components inside Geant4 for HGCAL simulation (navigation with knowledge of geometry structure)
 - Phase-2 CMS has ~2 times more physical volumes and ~1.5 more logical volumes mainly due to HGCAL
- Improved simulation of high and medium energy hadron/nuclei interactions for HGCal materials
 - Maximally explore high granularity for the particle flow analysis and pattern recognition
- Extended decay module of Geant4
 - More accurate branching ratios for baryons and mesons
 - Improved final state sampling
 - Addition of detailed tau, c-, and b- particle decays, native or via interface to generator packages

We welcome and encourage experts/developers of Geant4 actively engaged in the CMS simulation as CMS members

Fast MC Chain "FastSim"

- Fast simulation package has been developed over years, used to produce ~15% of simulated events, aim to increase this in Run 3, Phase2
- Parametrization-based, tuned using Geant4 event samples
- Realistic model of low-level objects (hits and clusters), fast tracking

	Evt. generation (GEN)->	Detector simulation (SIM)->	Digitization (DIGI)->	RECO	Total s/event
FullSim chain	e.g., MG amc@NLO	Geant4	detector electronics	analyze digis as if data	-
FastSim chain	" "	param. en. loss, GFlash x100 faster	same as FullSim	use GEN+DIGI x2.5 faster	X10 faster
Delphes -like Chain	"	simple 4- vector smearing	none	analytical efficiency	X1k faster

Numbers derived for ttbar events with Run-2 conditions and pileur

R&D for faster simulation

- Upgrade and validate -> more signatures
- Multi-faceted ML effort
 - Generative showering implementation using GAN, VAE
 - e.g., <u>arXiv:2005.05334</u>
 - FastSim refinement, e.g., WGAN, DCTRGAN
 - arXiv:2009.03796, arXiv:1802.03325
 - End-to-end simulation (,,FlashSim")
 - arXiv:1901.05282, arXiv:2005.05334
 - Denoising coarse sim output, industry work
- Delphes <u>arXiv:1307.6346</u> used for many upgrade sensitivity projections, e.g., CMS PAS
 FTR-16-005

Speed vs. Accuracy

Heterogeneity

- CMS is actively exploring heterogeneity
 - successful path to integrate new simulation engines has been demonstrated
 - https://arxiv.org/abs/2005.00949 and https://arxiv.org/abs/2004.02327 (GeantV)
 - for Run-3 a part of HLT code will run on GPUs
 - very interested in testing any new prototype for GPUs for Geant4
- Simulation applications that exploit accelerators can help CMS accessing and utilising future computing centres (e.g. HPCs, modernised WLCG tiers)
- Usage of ML algorithms for part of event simulation will naturally involve GPUs for full and fast simulation
 - carrying out several R&D projects to explore ML for simulation
 - any common solutions to use ML will be considered by CMS

Final remarks

- CMS working to satisfy enhanced computing needs for HL-LHC resulting from the large increases in event rates, luminosity and event complexity
- Will take advantage of many new optimisations afforded by the community e.g., with regards to simulation, geometry, heterogeneity, etc
- Ready to interface with new modes for event processing, e.g., GPU-based transport
- Simulation precision must meet the mark for new, high performing detector
- Plan to take advantage of Geant4 related improvements, including new physics lists, implementation of VecGeom, etc
- We very much welcome and encourage experts/developers of Geant4 actively engaged in the CMS simulation as CMS members
- Multi-pronged ML effort in collaboration with others in community, connection with CERN SFT ML4Sim group
 - Adequate mechanisms in G4 needed to allow seamless integration of such algorithms